Advertisement

2D View Aggregation for Lymph Node Detection Using a Shallow Hierarchy of Linear Classifiers

  • Ari Seff
  • Le Lu
  • Kevin M. Cherry
  • Holger R. Roth
  • Jiamin Liu
  • Shijun Wang
  • Joanne Hoffman
  • Evrim B. Turkbey
  • Ronald M. Summers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

Enlarged lymph nodes (LNs) can provide important information for cancer diagnosis, staging, and measuring treatment reactions, making automated detection a highly sought goal. In this paper, we propose a new algorithm representation of decomposing the LN detection problem into a set of 2D object detection subtasks on sampled CT slices, largely alleviating the curse of dimensionality issue. Our 2D detection can be effectively formulated as linear classification on a single image feature type of Histogram of Oriented Gradients (HOG), covering a moderate field-of-view of 45 by 45 voxels. We exploit both max-pooling and sparse linear fusion schemes to aggregate these 2D detection scores for the final 3D LN detection. In this manner, detection is more tractable and does not need to perform perfectly at instance level (as weak hypotheses) since our aggregation process will robustly harness collective information for LN detection. Two datasets (90 patients with 389 mediastinal LNs and 86 patients with 595 abdominal LNs) are used for validation. Cross-validation demonstrates 78.0% sensitivity at 6 false positives/volume (FP/vol.) (86.1% at 10 FP/vol.) and 73.1% sensitivity at 6 FP/vol. (87.2% at 10 FP/vol.), for the mediastinal and abdominal datasets respectively. Our results compare favorably to previous state-of-the-art methods.

Keywords

Random Forest Short Axis Diameter Multiple Instance Learning FROC Curve Lymph Node Detection System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., Dodd, L., Kaplan, R., Lacombe, D., Verweij, J.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009)CrossRefGoogle Scholar
  2. 2.
    Feuerstein, M., Glocker, B., Kitasaka, T., Nakamura, Y., Iwano, S., Mori, K.: Mediastinal atlas creation from 3-D chest computed tomography images: application to automated detection and station mapping of lymph nodes. Med. Image Anal. 16, 63–74 (2012)CrossRefGoogle Scholar
  3. 3.
    Kitasaka, T., Tsujimura, Y., Nakamura, Y., Mori, K., Suenaga, Y., Ito, M., Nawano, S.: Automated extraction of lymph nodes from 3-D abdominal CT images using 3-D minimum directional difference filter. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 336–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Barbu, A., Suehling, M., Xun, X., Liu, D., Zhou, S.K., Comaniciu, D.: Automatic detection and segmentation of lymph nodes from CT Data. IEEE Transactions on Medical Imaging 31, 240–250 (2012)CrossRefGoogle Scholar
  5. 5.
    Feulner, J., Zhou, S.K., Hammon, M., Hornegger, J., Comaniciu, D.: Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior. Medical Image Analysis 17, 254–270 (2013)CrossRefGoogle Scholar
  6. 6.
    Feuerstein, M., Deguchi, D., Kitasaka, T., Iwano, S., Imaizumi, K., Hasegawa, Y., Suenaga, Y., Mori, K.: Automatic mediastinal lymph node detection in chest CT. SPIE Medical Imaging, 72600–72611 (2009)Google Scholar
  7. 7.
    Nakamura, Y., Nimura, Y., Kitasaka, T., Mizuno, S., Furukawa, K., Goto, H., Fujiwara, M., Misawa, K., Ito, M., Nawano, S., Mori, K.: Automatic abdominal lymph node detection method based on local intensity structure analysis from 3D x-ray CT images. SPIE Medical Imaging, 86701–86707 (2013)Google Scholar
  8. 8.
    Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A library for Large Linear Classification. Journal of Machine Learning Research, 1871–1874 (2008)Google Scholar
  9. 9.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1627–1645 (2010)CrossRefGoogle Scholar
  10. 10.
    Veldaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008)Google Scholar
  11. 11.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  13. 13.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:21–27:27 (2011)Google Scholar
  14. 14.
    Boureau, Y.L., Le Roux, N., Bach, F., Ponce, J., LeCun, Y.: Ask the locals: Multi-way local pooling for image recognition. In: ICCV, pp. 2651–2658 (2011)Google Scholar
  15. 15.
    Raykar, V., Krishnapuram, B., Bi, J., Dundar, M., Rao, R.: Bayesian multiple instance learning: automatic feature selection and inductive transfer. In: ICML, pp. 808–815 (2008)Google Scholar
  16. 16.
    Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 514–521. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ari Seff
    • 1
  • Le Lu
    • 1
  • Kevin M. Cherry
    • 1
  • Holger R. Roth
    • 1
  • Jiamin Liu
    • 1
  • Shijun Wang
    • 1
  • Joanne Hoffman
    • 1
  • Evrim B. Turkbey
    • 1
  • Ronald M. Summers
    • 1
  1. 1.Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging SciencesNational Institutes of Health Clinical CenterBethesdaUSA

Personalised recommendations