Breast Cancer Risk Analysis Based on a Novel Segmentation Framework for Digital Mammograms

  • Xin Chen
  • Emmanouil Moschidis
  • Chris Taylor
  • Susan Astley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


The radiographic appearance of breast tissue has been established as a strong risk factor for breast cancer. Here we present a complete machine learning framework for automatic estimation of mammographic density (MD) and robust feature extraction for breast cancer risk analysis. Our framework is able to simultaneously classify the breast region, fatty tissue, pectoral muscle, glandular tissue and nipple region. Integral to our method is the extraction of measures of breast density (as the fraction of the breast area occupied by glandular tissue) and mammographic pattern. A novel aspect of the segmentation framework is that a probability map associated with the label mask is provided, which indicates the level of confidence of each pixel being classified as the current label. The Pearson correlation coefficient between the estimated MD value and the ground truth is 0.8012 (p-value<0.0001). We demonstrate the capability of our methods to discriminate between women with and without cancer by analyzing the contralateral mammograms of 50 women with unilateral breast cancer, and 50 controls. Using MD we obtained an area under the ROC curve (AUC) of 0.61; however our texture-based measure of mammographic pattern significantly outperforms the MD discrimination with an AUC of 0.70.


Digital mammogram segmentation breast cancer risk mammographic density texture analysis 


  1. 1.
    McCormack, V., dos, I., Silva, S.: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15(6), 1159–1169 (2006)CrossRefGoogle Scholar
  2. 2.
    Boyd, N., Martin, L., Bronskill, M., Yaffe, M., Duric, N., Minkin, S.: Breast tissue composition and susceptibility to breast cancer. J. Natl. Cancer Inst. 102(16), 1224–1237 (2010)CrossRefGoogle Scholar
  3. 3.
    Byng, J., Boyd, N., Fishell, E., Jong, R., Yaffe, M.: The quantitative analysis of mammographic densities. Phys. Med. Biol. 39(10), 1629 (1994)CrossRefGoogle Scholar
  4. 4.
    Keller, B., Nathan, D., Wang, Y., Zheng, Y., Gee, J., Conant, E., Kontos, D.: Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Phys. Med. Biol. 39(8), 4903–4917 (2012)Google Scholar
  5. 5.
    Alonzo-Proulx, O., Packard, N., Boone, J., Al-Mayah, A., Brock, K., Shen, S., Yaffe, M.: Validation of a method for measuring the volumetric breast density from digital mammograms. Phys. Med. Biol. 55(11), 3027–3044 (2010)CrossRefGoogle Scholar
  6. 6.
    Jeffreys, M., Harvey, J., Highnam, R.: Comparing a New Volumetric Breast Density Method (VolparaTM) to Cumulus. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 408–413. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Wolfe, J.: Breast patterns as an index of risk for developing breast cancer. Am. J. Roentgenol. 126(6), 1130–1137 (1976)CrossRefGoogle Scholar
  8. 8.
    Gram, I., Funkhouser, E., Tabár, L.: “The Tabár classification of mammographic parenchymal patterns ”. Eur. J. Radiol. 24(2), 131–136 (1997)CrossRefGoogle Scholar
  9. 9.
    Nielsen, M., Karemore, G., Loog, M., Raundahl, J., Karssemeijer, N., Otten, J., Karsdal, M., Vachon, C., Christiansen, C.: A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol. 35(4), 381–387 (2011)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Moschidis, E., Taylor, C., Astley, S.: A novel framework for fat, glandular tissue, pectoral muscle and nipple segmentation in full field digital mammograms. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 201–208. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Berks, M., Chen, Z., Astley, S., Taylor, C.: Detecting and classifying linear structures in mammograms using random forests. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 510–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xin Chen
    • 1
  • Emmanouil Moschidis
    • 1
  • Chris Taylor
    • 1
  • Susan Astley
    • 1
  1. 1.Centre for Imaging Sciences, Institute of Population HealthUniversity of ManchesterManchesterUK

Personalised recommendations