Advertisement

Towards Automatic Plan Selection for Radiotherapy of Cervical Cancer by Fast Automatic Segmentation of Cone Beam CT Scans

  • Thomas Langerak
  • Sabrina Heijkoop
  • Sandra Quint
  • Jan-Willem Mens
  • Ben Heijmen
  • Mischa Hoogeman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

We propose a method to automatically select a treatment plan for radiotherapy of cervical cancer using a Plan-of-the-Day procedure, in which multiple treatment plans are constructed prior to treatment. The method comprises a multi-atlas based segmentation algorithm that uses the selected treatment plan to choose between two atlas sets. This segmentation only requires two registration procedures and can therefore be used in clinical practice without using excessive computation time. Our method is validated on a dataset of 224 treatment fractions for 10 patients. In 37 cases (16%), no recommendation was made by the algorithm due to poor image quality or registration results. In 93% of the remaining cases a correct recommendation for a treatment plan was given.

Keywords

Cervical Cancer Treatment Plan Clinical Target Volume Helical Tomotherapy Bladder Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46, 726–738 (2009)CrossRefGoogle Scholar
  2. 2.
    Asman, A.J., Landman, B.A.: Formulating Spatially Varying Performance in the Statistical Fusion Framework. IEEE Trans. Med. Imaging 31(6), 1326–1336 (2012)CrossRefGoogle Scholar
  3. 3.
    Bondar, M.L., Hoogeman, M.S., Mens, J.W., Quint, S., Ahmad, R., Dhawtal, G., Heijmen, B.J.: Individualized nonadaptive and online-adaptive IMRT treatment strategies for cervical cancer patients based on pre-treatment acquired variable bladder filling CT-scans. Int. J. Radiat. Oncol. Biol. Phys. 83(5), 1617–1623 (2012)CrossRefGoogle Scholar
  4. 4.
    Commowick, O., Akhondi-Asl, A., Warfield, S.K.: Estimating a reference standard segmentation with spatially varying performance parameter: local MAP STAPLE. IEEE Trans. Med. Imaging 31(8), 1593–1606 (2012)CrossRefGoogle Scholar
  5. 5.
    Gill, S., Pham, D., Dang, K., Bressel, M., Kron, T., Siva, S., Tran, P.K., Tai, K.H., Foroudi, F.: Plan of the day selection for online image-guided adaptive post-prostatectomy radiotherapy. Rad. Onco. 107(2), 165–170 (2013)CrossRefGoogle Scholar
  6. 6.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33, 115–126 (2006)CrossRefGoogle Scholar
  7. 7.
    Langerak, T.R., van der Heide, U.A., Kotte, A.N.T.J., van Vulpen, M., Viergever, M., Pluim, J.P.W.: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Transactions on Medical Imaging 29(12), 2000–2008 (2010)CrossRefGoogle Scholar
  8. 8.
    Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.W.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics 35(4), 1407–1417 (2008)CrossRefGoogle Scholar
  9. 9.
    Langerak, T.R., Berendsen, F.F., van der Heide, U.A., Kotte, A.N.T.J., Pluim, J.P.W.: Multi-atlas-based segmentation with preregistration atlas selection. Med. Phys. 40(9), 091701 (2013)Google Scholar
  10. 10.
    Murthy, V., Master, Z., Adurkar, P., Mallick, I., Mahantshetty, U., Bakshi, G., Tongaonkar, H., Shrivastava, S.: ’Plan of the day’ adaptive radiotherapy for bladder cancer using helical tomotherapy. Radiother. Oncol. 99(1), 55–60 (2011)CrossRefGoogle Scholar
  11. 11.
    Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D.B., Maurer Jr., C.R.: Quo vadis, atlas-based segmentation? In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds.) Handbook of Biomedical Image Analysis. Topics in Biomedical Engineering International Book Series, pp. 435–486 (2005)Google Scholar
  12. 12.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903–992 (2004)CrossRefGoogle Scholar
  13. 13.
    Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med. Image Anal. (in press)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Langerak
    • 1
  • Sabrina Heijkoop
    • 1
  • Sandra Quint
    • 1
  • Jan-Willem Mens
    • 1
  • Ben Heijmen
    • 1
  • Mischa Hoogeman
    • 1
  1. 1.Department of Radiation OncologyErasmus-MC Cancer CenterRotterdamThe Netherlands

Personalised recommendations