Advertisement

Towards Personalized Interventional SPECT-CT Imaging

  • José Gardiazabal
  • Marco Esposito
  • Philipp Matthies
  • Aslı Okur
  • Jakob Vogel
  • Silvan Kraft
  • Benjamin Frisch
  • Tobias Lasser
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

The development of modern robotics and compact imaging detectors allows the transfer of diagnostic imaging modalities to the operating room, supporting surgeons to perform faster and safer procedures. An intervention that currently suffers from a lack of interventional imaging is radioembolization, a treatment for hepatic carcinoma. Currently, this procedure requires moving the patient from an angiography suite for preliminary catheterization and injection to a whole-body SPECT/CT for leakage detection, necessitating a second catheterization back in the angiography suite for the actual radioembolization. We propose an imaging setup that simplifies this procedure using a robotic approach to directly acquire an interventional SPECT/CT in the angiography suite. Using C-arm CT and a co-calibrated gamma camera mounted on a robotic arm, a personalized trajectory of the gamma camera is generated from the C-arm CT, enabling an interventional SPECT reconstruction that is inherently co-registered to the C-arm CT. In this work we demonstrate the feasibility of this personalized interventional SPECT/CT imaging approach in a liver phantom study.

Keywords

Convex Hull SPECT Image Gamma Camera Selective Internal Irradiation Angiography Suite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ganguly, A., Fieselmann, A., Marks, M., Rosenberg, J., Boese, J., Deuerling-Zheng, Y., Straka, M., Zaharchuck, G., Bammer, R., Fahrig, R.: Cerebral CT Perfusion Using an Interventional C-Arm Imaging System: Cerebral Blood Flow Measurements. Am. J. Neuroradiol. 32, 1525–1531 (2011)CrossRefGoogle Scholar
  2. 2.
    Wendler, T., Herrmann, K., Schnelzer, A., Lasser, T., Traub, J., Kutter, O., Ehlerding, A., Scheidhauer, K., Schuster, T., Kiechle, M., Schwaiger, M., Navab, N., Ziegler, S.I., Buck, A.K.: First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur. J. Nucl. Med. 37(8), 1452–1461 (2010)CrossRefGoogle Scholar
  3. 3.
    Cherry, S.R., Sorenson, J.A., Phelps, M.E.: Physics in Nuclear Medicine. Elsevier Health Sciences (April 2012)Google Scholar
  4. 4.
    Sangro, B., Iñarrairaegui, M., Bilbao, J.I.: Radioembolization for hepatocellular carcinoma. Journal of Hepatology 56(2), 464–473 (2012)CrossRefGoogle Scholar
  5. 5.
    Lam, M.G.E.H., Goris, M.L., Iagaru, A.H., Mittra, E.S., Louie, J.D., Sze, D.Y.: Prognostic Utility of 90Y Radioembolization Dosimetry Based on Fusion 99mTc-Macroaggregated Albumin-99mTc-Sulfur Colloid SPECT. Journal of Nuclear Medicine 54(12), 2055–2061 (2013)CrossRefGoogle Scholar
  6. 6.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(4), 376–380 (1991)CrossRefGoogle Scholar
  7. 7.
    Shepp, L.A., Vardi, Y.: Maximum Likelihood Reconstruction for Emission Tomography. Transactions on Medical Imaging MI-1(2), 113–122 (1982)CrossRefGoogle Scholar
  8. 8.
    Matthies, P., Sharma, K., Okur, A., Gardiazabal, J., Vogel, J., Lasser, T., Navab, N.: First use of mini gamma cameras for intra-operative robotic SPECT reconstruction. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 163–170. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. Journal of the Optical Society of America A 1(6), 612–619 (1984)CrossRefGoogle Scholar
  10. 10.
    Stayman, J., Siewerdsen, J.: Task-based trajectories in iteratively reconstructed interventional cone-beam CT, Lake Tahoe, CA, pp. 257–260 (2013)Google Scholar
  11. 11.
    Vogel, J., Lasser, T., Gardiazabal, J., Navab, N.: Trajectory optimization for intra-operative nuclear tomographic imaging. Medical Image Analysis 17(7), 723–731 (2013)CrossRefGoogle Scholar
  12. 12.
    Bowsher, J., Yan, S., Roper, J., Giles, W., Yin, F.F.: Onboard functional and molecular imaging: a design investigation for robotic multipinhole SPECT. Medical Physics 41(1), 010701 (2014), PMID: 24387490 PMCID: PMC3888458Google Scholar
  13. 13.
    Ahmadzadehfar, H., Muckle, M., Sabet, A., Wilhelm, K., Kuhl, C., Biermann, K., Haslerud, T., Biersack, H.J., Ezziddin, S.: The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. European Journal of Nuclear Medicine and Molecular Imaging (October 2011), PMID: 21975832Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José Gardiazabal
    • 1
    • 2
  • Marco Esposito
    • 1
  • Philipp Matthies
    • 1
  • Aslı Okur
    • 1
    • 2
  • Jakob Vogel
    • 1
  • Silvan Kraft
    • 1
    • 3
  • Benjamin Frisch
    • 1
  • Tobias Lasser
    • 1
  • Nassir Navab
    • 1
    • 4
  1. 1.Computer Aided Medical Procedures (CAMP)Germany
  2. 2.Department of Nuclear MedicineKlinikum Rechts der IsarGermany
  3. 3.Department of RadiologyKlinikum Rechts der Isar, Technische Universität MünchenGermany
  4. 4.Computer Aided Medical Procedures (CAMP)Johns Hopkins UniversityUSA

Personalised recommendations