This paper presents a robotic control method for 3D steering of a beveled-tip flexible needle. The solution is based on a new duty-cycling control strategy that makes possible to control three degrees of freedom of the needle. A visual servoing control scheme using two orthogonal cameras observing a translucent phantom is then proposed to automatically steer a needle toward a 3D target point. Experimental results show a final positioning error of 0.4 mm and demonstrate the feasibility of this promising approach and its robustness to model errors.


Flexible needle steering visual servoing 


  1. 1.
    Reed, K., Majewicz, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N., Okamura, A.: Robot-assisted needle steering. IEEE Robotics and Automation Magazine 18(4), 35–46 (2011)CrossRefGoogle Scholar
  2. 2.
    Webster III, R., Kim, J., Cowan, N., Chirikjian, G., Okamura, A.M.: Nonholonomic modeling of needle steering. The International Journal of Robotics Research 25(5-6), 509–525 (2006)CrossRefGoogle Scholar
  3. 3.
    Misra, S., Reed, K., Schafer, B., Ramesh, K., Okamura, A.: Mechanics of flexible needles robotically steered through soft tissue. The International Journal of Robotics Research 29(13), 1640–1660 (2010)CrossRefGoogle Scholar
  4. 4.
    Alterovitz, R., Goldberg, K., Okamura, A.: Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In: IEEE Int. Conf on Robotics and Automation, pp. 1640–1645 (2005)Google Scholar
  5. 5.
    LaValle, S., Kuffner, J.: Randomized kinodynamic planning. In: IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 473–479 (1999)Google Scholar
  6. 6.
    Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty. In: Burgard, W., et al. (eds.) Robotics: Science and Systems III, pp. 233–241. MIT Press (2008)Google Scholar
  7. 7.
    Minhas, D., Engh, J., Fenske, M., Riviere, C.: Modeling of needle steering via duty-cycled spinning. In: IEEE Int. Conf. on Engineering in Medicine and Biology Society, pp. 2756–2759 (2007)Google Scholar
  8. 8.
    Wood, N., Shahrour, K., Ost, M., Riviere, C.: Needle steering system using duty-cycled rotation for percutaneous kidney access. In: IEEE Int. Conf on Engineering in Medicine and Biology Society (EMBS), pp. 5432–5435 (2010)Google Scholar
  9. 9.
    Xu, J., Duindam, V., Alterovitz, R., Goldberg, K.: Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring random trees and backchaining. In: IEEE Int. Conf on Automation Science and Engineering, pp. 41–46 (2008)Google Scholar
  10. 10.
    Bernardes, M., Adorno, B., Poignet, P., Borges, G.: Robot-assisted automatic insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory replanning. Mechatronics 23, 630–645 (2013)CrossRefGoogle Scholar
  11. 11.
    Chaumette, F., Hutchinson, S.: Visual servo control, part i: Basic approaches. IEEE Robotics and Automation Magazine 13(4), 82–90 (2006)CrossRefGoogle Scholar
  12. 12.
    Uhercik, M., Kybic, J., Liebgott, H., Cachard, C.: Model fitting using ransac for surgical tool localization in 3-D ultrasound images. IEEE Trans. on Biomedical Engineering 57(8), 1907–1916 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandre Krupa
    • 1
  1. 1.Inria Rennes - Bretagne Atlantique and IRISARennes CedexFrance

Personalised recommendations