Advertisement

Simultaneous Segmentation and Anatomical Labeling of the Cerebral Vasculature

  • David Robben
  • Engin Türetken
  • Stefan Sunaert
  • Vincent Thijs
  • Guy Wilms
  • Pascal Fua
  • Frederik Maes
  • Paul Suetens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

We present a novel algorithm for the simultaneous segmentation and anatomical labeling of the cerebral vasculature. The method first constructs an overcomplete graph capturing the vasculature. It then selects and labels the subset of edges that most likely represents the true vasculature. Unlike existing approaches that first attempt to obtain a good segmentation and then perform labeling, we jointly optimize for both by simultaneously taking into account the image evidence and the prior knowledge about the geometry and connectivity of the vasculature. This results in an Integer Program (IP), which we solve optimally using a branch-and-cut algorithm. We evaluate our approach on a public dataset of 50 cerebral MRA images, and demonstrate that it compares favorably against state-of-the-art methods.

Keywords

Cerebral Vasculature Segmentation Reconstruction Anatomical Labeling Circle of Willis Integer Programming 

References

  1. 1.
    Bogunovic, H., Pozo, J.M., Cardenes, R., Roman, L.S., Frangi, A.F.: Anatomical labeling of the Circle of Willis using maximum a posteriori probability estimation. IEEE Transactions on Medical Imaging 32(9), 1587–1599 (2013)CrossRefGoogle Scholar
  2. 2.
    Bullitt, E., Zeng, D., Gerig, G., Aylward, S., Joshi, S., Smith, J.K., Lin, W., Ewend, M.G.: Vessel tortuosity and brain tumor malignancy: A blinded study. Academic Radiology 12(10), 1232–1240 (2005)CrossRefGoogle Scholar
  3. 3.
    Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Transactions on Medical Imaging 26(9), 1213–1223 (2007)CrossRefGoogle Scholar
  4. 4.
    Lu, L., Bi, J., Yu, S., Peng, Z., Krishnan, A., Zhou, X.S.: Hierarchical Learning for Tubular Structure Parsing in Medical Imaging: A Study on Coronary Arteries Using 3D CT Angiography. In: ICCV, pp. 2021–2028 (2009)Google Scholar
  5. 5.
    Mori, K., Ota, S., Deguchi, D., Kitasaka, T., Suenaga, Y., Iwano, S., Hasegawa, Y., Takabatake, H., Mori, M., Natori, H.: Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 707–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Robben, D., Sunaert, S., Thijs, V., Wilms, G., Maes, F., Suetens, P.: Anatomical labeling of the Circle of Willis using maximum a posteriori graph matching. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 566–573. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Turetken, E., Benmansour, F., Andres, B., Pfister, H., Fua, P.: Reconstructing loopy curvilinear structures using integer programming. In: CVPR, pp. 1822–1829 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Robben
    • 1
  • Engin Türetken
    • 2
  • Stefan Sunaert
    • 3
  • Vincent Thijs
    • 4
  • Guy Wilms
    • 3
  • Pascal Fua
    • 2
  • Frederik Maes
    • 1
  • Paul Suetens
    • 1
  1. 1.iMinds - Medical Image Computing (ESAT/PSI)KU LeuvenBelgium
  2. 2.CVLabEPFLLausanneSwitzerland
  3. 3.Department of Radiology ,University Hospitals LeuvenKU LeuvenBelgium
  4. 4.Department of Neurology,University Hospitals LeuvenKU LeuvenBelgium

Personalised recommendations