Advertisement

Signal Decomposition for X-ray Dark-Field Imaging

  • Sebastian Kaeppler
  • Florian Bayer
  • Thomas Weber
  • Andreas Maier
  • Gisela Anton
  • Joachim Hornegger
  • Matthias Beckmann
  • Peter A. Fasching
  • Arndt Hartmann
  • Felix Heindl
  • Thilo Michel
  • Gueluemser Oezguel
  • Georg Pelzer
  • Claudia Rauh
  • Jens Rieger
  • Ruediger Schulz-Wendtland
  • Michael Uder
  • David Wachter
  • Evelyn Wenkel
  • Christian Riess
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

Grating-based X-ray dark-field imaging is a new imaging modality. It allows the visualization of structures at micrometer scale due to small-angle scattering of the X-ray beam. However, reading dark-field images is challenging as absorption and edge-diffraction effects also contribute to the dark-field signal, without adding diagnostic value. In this paper, we present a novel – and to our knowledge the first – algorithm for isolating small-angle scattering in dark-field images, which greatly improves their interpretability. To this end, our algorithm utilizes the information available from the absorption and differential phase images to identify clinically irrelevant contributions to the dark-field image. Experimental results on phantom and ex-vivo breast data promise a greatly enhanced diagnostic value of dark-field images.

Keywords

Independent Component Analysis Signal Decomposition Absorption Image Edge Correction Foam Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany, A., Stevenson, A.W.: Phase-contrast imaging using polychromatic hard x-rays. Nature 384(6607), 335–338 (1996)CrossRefGoogle Scholar
  2. 2.
    Parham, C., Zhong, Z., Connor, D.M., Chapman, L.D., Pisano, E.D.: Design and implementation of a compact low-dose diffraction enhanced medical imaging system. Academic Radiology 16(8), 911–917 (2009)CrossRefGoogle Scholar
  3. 3.
    Pfeiffer, F., Weitkamp, T., Bunk, O., David, C.: Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources. Nature Physics 2(4), 258–261 (2006)CrossRefGoogle Scholar
  4. 4.
    Momose, A., Yashiro, W., Takeda, Y.: Sensitivity of x-ray phase imaging based on talbot interferometry. Japanese Journal of Applied Physics 47(10), 8077–8080 (2008)CrossRefGoogle Scholar
  5. 5.
    Yashiro, W., Terui, Y., Kawabata, K., Momose, A.: On the origin of visibility contrast in x-ray talbot interferometry. Optics Express 18(16), 16890–16901 (2010)CrossRefGoogle Scholar
  6. 6.
    Michel, T., Rieger, J., Anton, G., Bayer, F., Beckmann, M., Durst, J., Fasching, P., Haas, W., Hartmann, A., Pelzer, G., Radicke, M., Rauh, C., Ritter, A., Sievers, P., Schulz-Wendtland, R., Uder, M., Wachter, D., Weber, T., Wenkel, E., Zang, A.: On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Physics in Medicine and Biology 58(8), 2713–2732 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Clavijo, C.A., Roessl, E., van Stevendaal, U., Koehler, T., Hauser, N., Stampanoni, M.: Image fusion scheme for differential phase contrast mammography. Journal of Instrumentation 8(7), C07011 (2013)Google Scholar
  8. 8.
    Haas, W., Polyanskaya, M., Bayer, F., Gödel, K., Hofmann, H., Rieger, J., Ritter, A., Weber, T., Wucherer, L., Durst, J., Michel, T., Anton, G., Hornegger, J.: Image fusion in x-ray differential phase-contrast imaging. In: Proc. SPIE 8314 Medical Imaging, p. 83143U (2012)Google Scholar
  9. 9.
    Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sebastian Kaeppler
    • 1
  • Florian Bayer
    • 2
  • Thomas Weber
    • 2
  • Andreas Maier
    • 1
  • Gisela Anton
    • 2
  • Joachim Hornegger
    • 1
  • Matthias Beckmann
    • 3
  • Peter A. Fasching
    • 3
  • Arndt Hartmann
    • 3
  • Felix Heindl
    • 3
  • Thilo Michel
    • 2
  • Gueluemser Oezguel
    • 3
  • Georg Pelzer
    • 2
  • Claudia Rauh
    • 3
  • Jens Rieger
    • 2
  • Ruediger Schulz-Wendtland
    • 3
  • Michael Uder
    • 3
  • David Wachter
    • 3
  • Evelyn Wenkel
    • 3
  • Christian Riess
    • 1
  1. 1.Pattern Recognition LabFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Erlangen Centre for Astroparticle PhysicsFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.University Hospital of ErlangenFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations