Advertisement

Application-Driven MRI: Joint Reconstruction and Segmentation from Undersampled MRI Data

  • Jose Caballero
  • Wenjia Bai
  • Anthony N. Price
  • Daniel Rueckert
  • Joseph V. Hajnal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)

Abstract

Medical image segmentation has traditionally been regarded as a separate process from image acquisition and reconstruction, even though its performance directly depends on the quality and characteristics of these first stages of the imaging pipeline. Adopting an integrated acquisition-reconstruction-segmentation process can provide a more efficient and accurate solution. In this paper we propose a joint segmentation and reconstruction algorithm for undersampled magnetic resonance data. Merging a reconstructive patch-based sparse modelling and a discriminative Gaussian mixture modelling can produce images with enhanced edge information ultimately improving their segmentation.

Keywords

Discrete Cosine Transform Gaussian Mixture Model Compress Sense Sparse Code Magnetic Resonance Imaging Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)Google Scholar
  2. 2.
    Caballero, J., Price, A.N., Rueckert, D., Hajnal, J.V.: Dictionary learning and time sparsity in dynamic MR data reconstruction. IEEE Trans. Med. Imag. 33(4), 979–994 (2014)CrossRefGoogle Scholar
  3. 3.
    Caballero, J., Rueckert, D., Hajnal, J.V.: Dictionary learning and time sparsity in dynamic MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 256–263. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Meth. Prog. Bio. 104(3), 158–177 (2011)CrossRefGoogle Scholar
  5. 5.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vision Graph. 29(1), 100–132 (1985)CrossRefGoogle Scholar
  8. 8.
    Hsiao, I.T., Rangarajan, A., Gindi, G.: Joint-MAP reconstruction/segmentation for transmission tomography using mixture-models as priors. IEEE Nucl. Sci. Symp. Conf. Rec. 3, 1689–1693 (1998)Google Scholar
  9. 9.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  10. 10.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Med. Image Anal. 1(2), 91–108 (1996)CrossRefGoogle Scholar
  11. 11.
    Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imag. 30(5), 1028–1041 (2011)CrossRefGoogle Scholar
  12. 12.
    de Sompel, D.V., Brady, M.: Simultaneous reconstruction and segmentation algorithm for positron emission tomography and transmission tomography. In: ISBI 2008, pp. 1035–1038. IEEE (2008)Google Scholar
  13. 13.
    Tosic, I., Frossard, P.: Dictionary learning. IEEE Signal Process. Mag. 28(2), 27–38 (2011)CrossRefGoogle Scholar
  14. 14.
    Virtue, P., Uecker, M., Elad, M., Lustig, M.: Predicting image quality of under-sampled data reconstruction in the presence of noise. In: Proc. 21st Annual Meeting ISMRM, Salt Lake City, Utah, USA, p. 2668 (2013)Google Scholar
  15. 15.
    Zhang, Q., Plemmons, R., Kittle, D., Brady, D., Prasad, S.: Joint segmentation and reconstruction of hyperspectral data with compressed measurements. Appl. Opt. 50(22), 4417–4435 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jose Caballero
    • 1
  • Wenjia Bai
    • 1
  • Anthony N. Price
    • 2
  • Daniel Rueckert
    • 1
  • Joseph V. Hajnal
    • 2
  1. 1.Department of ComputingImperial College LondonUK
  2. 2.Division of Imaging Sciences and Biomedical Engineering DepartmentKing’s College London, St. Thomas’ HospitalLondonUK

Personalised recommendations