Skip to main content

Naturalistic Pain Synthesis for Virtual Patients

  • Conference paper
Intelligent Virtual Agents (IVA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8637))

Included in the following conference series:

Abstract

Within the clinical education community, there is a desire to improve learners’ pain observation skills. Virtual patients can be used as a training tool for this purpose. In this paper, we present a pioneering approach for synthesizing naturalistic pain on virtual patients. Using the UNBC-McMaster pain archive and a CLM-based face tracker, we performed naturalistic pain synthesis. We conducted an experiment to validate our synthesis approach and compared it to manual methods that use FACS-trained animators. Our results suggest that our approach was effective, and yielded higher pain labeling accuracies compared to manually animated painful faces. This research offers a new tool to both the virtual patient and clinical education communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kenny, P., Parsons, T.D., Gratch, J., Leuski, A., Rizzo, A.A.: Virtual patients for clinical therapist skills training. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 197–210. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Benjamin, L.: Shader lamps virtual patients: the physical manifestation of virtual patients. In: Medicine Meets Virtual Reality 19: NextMed, vol. 173 (2012)

    Google Scholar 

  3. Mitchell, S.E., et al.: Developing virtual patient advocate technology for shared decision making. In: 34th Annual Meeting of the Society for Medical Decision Making (2012)

    Google Scholar 

  4. Gonzales, M.J., Moosaei, M., Riek, L.D.: A novel method for synthesizing naturalistic pain on virtual patients. In: Simulation in Healthcare (2013)

    Google Scholar 

  5. Ryan, K.F.: Human simulation for medicine. In: Human Simulation for Nursing and Health Professions (2011)

    Google Scholar 

  6. Henry, S.G., Fuhrel-Forbis, A., Rogers, M.A., Eggly, S.: Association between nonverbal communication during clinical interactions and outcomes: A systematic review and meta-analysis. Patient Education and Counseling 86(3) (2012)

    Google Scholar 

  7. Martin, L.R., Friedman, H.S.: Nonverbal communication and health care. In: Applications of Nonverbal Communication (2005)

    Google Scholar 

  8. Back, A.L., et al.: Efficacy of communication skills training for giving bad news and discussing transitions to palliative care. Arch. Intern. Med. 167(5) (2007)

    Google Scholar 

  9. Brown, J.: How clinical communication has become a core part of medical education in the UK. Medical Education 42(3) (2008)

    Google Scholar 

  10. Leonard, M.: The human factor: the critical importance of effective teamwork and communication in providing safe care. Qual. Saf. Health Care 13 (2004)

    Google Scholar 

  11. Huus, A., Riek, L.D.: An Expressive Robotic Patient to Improve Clinical Communication. In: 7th ACM International Conference on Human-Robot Interaction (HRI), Pioneers Workshop (2012)

    Google Scholar 

  12. Martin, T.J., Rzepczynski, A.P., Riek, L.D.: Ask, inform, or act: communication with a robotic patient before haptic action. In: Proceedings of the International Conference on Human-Robot Interaction, HRI (2012)

    Google Scholar 

  13. Rzepcynski, A., Martin, T., Riek, L.: Communication and awareness: the building blocks of a successful clinical environment. In: Proceedings of the International Conference on Clinical Communication (2012)

    Google Scholar 

  14. Janiw, A., Woodrick, L., Riek, L.D.: Patient situational awareness support appears to fall with advancing levels of nursing student education. In: Simulation in Healthcare (2013)

    Google Scholar 

  15. Rzepcynski, A., Martin, T., Riek, L.: Informed consent and haptic actions in interdisciplinary simulation training. In: Proceedings of the American Public Health Association, APHA (2012)

    Google Scholar 

  16. Henneman, E.A., Roche, J.P., Fisher, D.L., Cunningham, H., Reilly, C.A., Nathanson, B.H., Henneman, P.L.: Error identification and recovery by student nurses using human patient simulation: Opportunity to improve patient safety. Appl. Nurs. Res. 23(1) (2010)

    Google Scholar 

  17. Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., Mcrorie, M., Martin, J.-C., Devillers, L., Abrilian, S., Batliner, A., et al.: The humaine database: addressing the collection and annotation of naturalistic and induced emotional data. In: Affective Computing and Intelligent Interaction, pp. 488–500. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Ashraf, A.B., Lucey, S., Cohn, J.F., et al.: The painful face: pain expression recognition using active appearance models. ACM ICMI (2007)

    Google Scholar 

  19. Lucey, P., et al.: Automatically detecting pain using facial actions. In: 3rd Int’l Conference on Affective Computing and Intelligent Interaction, ACII (2009)

    Google Scholar 

  20. Hammal, Z., Cohn, J.F.: Automatic detection of pain intensity. In: ICMI (2012)

    Google Scholar 

  21. Coll, M.-P., Grégoire, M., Latimer, M., Eugène, F., Jackson, P.L.: Perception of pain in others: implication for caregivers. Pain Management 1(3), 257–265 (2011)

    Article  Google Scholar 

  22. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Matthews, I.: Painful data: The unbc-mcmaster shoulder pain expression archive database. In: IEEE International Conference on Automatic Face & Gesture Recognition (2011)

    Google Scholar 

  23. Riva, P., Sacchi, S., Montali, L., Frigerio, A.: Gender effects in pain detection: Speed and accuracy in decoding female and male pain expressions. Eur. J. Pain (2011)

    Google Scholar 

  24. Hirsh, A.T., Alqudah, A.F., Stutts, L.A., Robinson, M.E.: Virtual human technology: Capturing sex, race, and age influences in individual pain decision policies. Pain 140(1) (2008)

    Google Scholar 

  25. Kappesser, J.,, A.C., de C. Williams, A.C.: Pain and negative emotions in the face: judgements by health care professionals. Pain 99(1) (2002)

    Google Scholar 

  26. Bazo, D., Vaidyanathan, R., Lentz, A., Melhuish, C.: Design and testing of a hybrid expressive face for a humanoid robot. IEEE (IROS) (2010)

    Google Scholar 

  27. Berns, K., Hirth, J.: Control of facial expressions of the humanoid robot head roman. In: IEEE/RSJ IROS (2006)

    Google Scholar 

  28. Bernardes, S.F., Lima, M.L.: On the contextual nature of sex-related biases in pain judgments: The effects of pain duration, patient’s distress and judge’s sex. Eur. J. Pain 15(9) (2011)

    Google Scholar 

  29. Simon, D., Craig, K.D., Miltner, W.H., Rainville, P.: Brain responses to dynamic facial expressions of pain. Pain 126(1) (2006)

    Google Scholar 

  30. Hadjistavropoulos, T., Craig, K.D., Fuchs-Lacelle, S.: Social influences and the communication of pain. Pain: Psychological Perspectives (2004)

    Google Scholar 

  31. Prkachin, K.M., Craig, K.D.: Expressing pain: The communication and interpretation of facial pain signals. J. Nonverbal Behav. 19(4) (1995)

    Google Scholar 

  32. de C. Williams, A.C., Davies, H.T.O., Chadury, Y.: Simple pain rating scales hide complex idiosyncratic meanings. Pain 85(3) (2000)

    Google Scholar 

  33. Aung, M., Romera-Paredes, B., Singh, A., Lim, S., Kanakam, N., de C. Williams, A., Bianchi-Berthouze, N.: Getting rid of pain-related behaviour to improve social and self perception: a technology-based perspective. In: 14th International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS (2013)

    Google Scholar 

  34. Romera-Paredes, B., et al.: Transfer learning to account for idiosyncrasy in face and body expressions. IEEE Face and Gesture (2013)

    Google Scholar 

  35. Ekman, P., Rosenberg, E.L.: What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System, Oxford (1997)

    Google Scholar 

  36. Simon, D., Craig, K.D., et al.: Recognition and discrimination of prototypical dynamic expressions of pain and emotions. Pain 135 (2008)

    Google Scholar 

  37. Prkachin, K.M., Berzins, S., Mercer, S.R.: Encoding and decoding of pain expressions: a judgement study. Pain 58(2) (1994)

    Google Scholar 

  38. Monwar, M.M., Rezaei, S.: Pain recognition using artificial neural network. In: IEEE Symposium on Signal Processing and Information Technology (2006)

    Google Scholar 

  39. Williams, L.: Performance-driven facial animation. ACM SIGGRAPH Computer Graphics 24(4) (1990)

    Google Scholar 

  40. Wan, X., Jin, X.: Data-driven facial expression synthesis via laplacian deformation. Multimedia Tools and Applications 58(1) (2012)

    Google Scholar 

  41. Beeler, T., et al.: High-quality passive facial performance capture using anchor frames. ACM T. Graphic 30 (2011)

    Google Scholar 

  42. Bickel, B., et al.: Physical face cloning. ACM T. Graphic. 31 (2012)

    Google Scholar 

  43. Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: IEEE Int’l Conf. on Multimedia and Expo, ICME (2005)

    Google Scholar 

  44. Baltrusaitis, T., Robinson, P., Morency, L.: 3d constrained local model for rigid and non-rigid facial tracking. In: CVPR (2012)

    Google Scholar 

  45. Chew, S.W., Lucey, P., Lucey, S., Saragih, J., Cohn, J.F., Sridharan, S.: Person-independent facial expression detection using constrained local models. In: IEEE Int’l Conf. on Automatic Face and Gesture Recognition, FG (2011)

    Google Scholar 

  46. Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local models. Proceedings of British Machine Vision Conference 3 (2006)

    Google Scholar 

  47. Abboud, B., Davoine, F., Dang, M.: Facial expression recognition and synthesis based on an appearance model. Signal Process-Image 19(8) (2004)

    Google Scholar 

  48. Valve Software: Source SDK, http://source.valvesoftware.com/sourcesdk.php

  49. Camstudio: Open source streaming video software, http://camstudio.org

  50. Tottenham, N., et al.: The nimstim set of facial expressions: judgments from untrained research participants. Psychiatry Research 168(3) (2009)

    Google Scholar 

  51. Russell, J.A.: Is there universal recognition of emotion from facial expressions? a review of the cross-cultural studies. Psychological Bulletin 115(1) (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Moosaei, M., Gonzales, M.J., Riek, L.D. (2014). Naturalistic Pain Synthesis for Virtual Patients. In: Bickmore, T., Marsella, S., Sidner, C. (eds) Intelligent Virtual Agents. IVA 2014. Lecture Notes in Computer Science(), vol 8637. Springer, Cham. https://doi.org/10.1007/978-3-319-09767-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09767-1_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09766-4

  • Online ISBN: 978-3-319-09767-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics