Advertisement

SFFS-SW: A Feature Selection Algorithm Exploring the Small-World Properties of GNs

  • Fábio Fernandes da Rocha Vicente
  • Fabrício Martins Lopes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8626)

Abstract

In recent years, several methods for gene networks (GNs) inference from expression data have been developed. Also, models of data integration (as protein-protein and protein-DNA) are nowadays broadly used to face the problem of few amount of expression data. Moreover, it is well known that biological networks conserve some topological properties. The small-world topology is a common arrangement in nature found both in biological and non-biological phenomena. However, in general this information is not used by GNs inference methods. In this work we proposed a new GNs inference algorithm that combines topological features and expression data. The algorithm outperforms the approach that uses only expression data both in accuracy and measures of recovered network.

Keywords

small-world gene networks feature selection graph theory pattern recognition bioinformatics 

References

  1. 1.
    Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Physical Review Letters 87(19), 198701 (2001)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press (2012)Google Scholar
  4. 4.
    Lago-Fernández, et al.: Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters 84(12), 2758—2761 (March 2000)Google Scholar
  5. 5.
    Latora, V., Marchiori, M.: Is the Boston subway a small-world network? Physica A: Statistical Mechanics and its Applications 314(1-4), 109–113 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bassett, D.S., Bullmore, E.: Small-world brain networks. The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry 12(6), 512–523 (2006)CrossRefGoogle Scholar
  7. 7.
    Baek, W.H., et al.: Analysis of topological properties in a seismic network. Physica A: Statistical Mechanics and its Applications 391(6), 2279–2285 (2012)CrossRefGoogle Scholar
  8. 8.
    Amaral, L., et al.: Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  9. 9.
    Vázquez, A., et al.: The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proceedings of the National Academy of Sciences of the United States of America 101(52), 17940–17945 (2004)CrossRefGoogle Scholar
  10. 10.
    Brockmann, D., Helbing, D.: The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science 342(6164), 1337–1342 (2013)CrossRefGoogle Scholar
  11. 11.
    da Costa, L.F., et al.: Characterization of complex networks: a survey of measurements. Advances in Physics 56(1), 167–242 (2007)Google Scholar
  12. 12.
    Pavlopoulos, G., et al.: Using graph theory to analyze biological networks. BioData Mining 4(1), 10 (2011)CrossRefGoogle Scholar
  13. 13.
    Jeong, H., et al.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  14. 14.
    Ma, H.W., et al.: Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics 5, 199 (2004)CrossRefGoogle Scholar
  15. 15.
    Milgram, S.: The Small-World Problem. Psychology Today 1(1), 61–67 (1967)MathSciNetGoogle Scholar
  16. 16.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefGoogle Scholar
  17. 17.
    Newman, M.E., Watts, D.J.: Scaling and percolation in the small-world network model. Physical review. Physical review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 60(6 pt. B), 7332–7342 (1999)Google Scholar
  18. 18.
    Zhao, H., et al.: Self-organizing Ising model of artificial financial markets with small-world network topology. EPL (Europhysics Letters) 101(1), 18001 (2013)CrossRefGoogle Scholar
  19. 19.
    Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Physical review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 61(5 pt. B), 5678–5682 (2000)CrossRefGoogle Scholar
  20. 20.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  21. 21.
    Assenov, Y., et al.: Computing topological parameters of biological networks. Bioinformatics 24(2), 282–284 (2008)CrossRefGoogle Scholar
  22. 22.
    Ravasz, E., et al.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  23. 23.
    Shmulevich, I., Dougherty, E.: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90(11), 1778–1792 (2002)CrossRefGoogle Scholar
  24. 24.
    Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nature Reviews. Molecular Cell Biology 9(10), 770–780 (2008)CrossRefGoogle Scholar
  25. 25.
    Baralla, A., Mentzen, W.I., de la Fuente, A.: Inferring gene networks: dream or nightmare? Annals of the New York Academy of Sciences 1158, 246–256 (2009)CrossRefGoogle Scholar
  26. 26.
    Dougherty, E.R., Bittner, M.L.: Causality, randomness, intelligibility, and the epistemology of the cell. Current Genomics 11(4), 221–237 (2010)CrossRefGoogle Scholar
  27. 27.
    Lopes, F.M., Ray, S.S., Hashimoto, R.F., Cesar Jr., R.M.: Entropic biological score: a cell cycle investigation for GRNs inference. Gene 541(2), 129–137 (2014)CrossRefGoogle Scholar
  28. 28.
    Dougherty, E.R.: Validation of inference procedures for gene regulatory networks. Current Genomics 8(6), 351–359 (2007)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Lopes, F.M., Martins Jr., D.C., Barrera, J., Cesar Jr., R.M.: A feature selection technique for inference of graphs from their known topological properties: Revealing scale-free gene regulatory networks. Information Sciences 272, 1–15 (2014)CrossRefGoogle Scholar
  30. 30.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)CrossRefGoogle Scholar
  31. 31.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature-selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  32. 32.
    Lopes, F.M., Martins Jr., D.C., Cesar-Jr, R.M.: Feature selection environment for genomic applications. BMC Bioinformatics 9(1), 451 (2008)CrossRefGoogle Scholar
  33. 33.
    Lopes, F.M., Martins Jr., D.C., Barrera, J., Cesar Jr., R.M.: SFFS-MR: a floating search strategy for GRNs inference. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 407–418. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Yu, L., Watterson, S., Marshall, S., Ghazal, P.: Inferring Boolean networks with perturbation from sparse gene expression data: a general model applied to the interferon regulatory network. Molecular BioSystems 4(10), 1024–1030 (2008)CrossRefGoogle Scholar
  35. 35.
    Lopes, F.M., Cesar Jr., R.M., da Costa, L.F.: AGN simulation and validation model. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 169–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Lopes, F.M., Cesar Jr., R.M., da Costa, L.F.: Gene expression complex networks: Synthesis, identification, and analysis. Journal of Computational Biology 18(10), 1353–1367 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fábio Fernandes da Rocha Vicente
    • 1
    • 2
  • Fabrício Martins Lopes
    • 1
  1. 1.Federal University of TechnologyParanáBrazil
  2. 2.Institute of Mathematics and StatisticsUniversity of São PauloSão PauloBrazil

Personalised recommendations