Evolutionary Algorithm Based on New Crossover for the Biclustering of Gene Expression Data

  • Ons Maâtouk
  • Wassim Ayadi
  • Hend Bouziri
  • Beatrice Duval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8626)


Microarray represents a recent multidisciplinary technology. It measures the expression levels of several genes under different biological conditions, which allows to generate multiple data. These data can be analyzed through biclustering method to determinate groups of genes presenting a similar behavior under specific groups of conditions.

This paper proposes a new evolutionary algorithm based on a new crossover method, dedicated to the biclustering of gene expression data. This proposed crossover method ensures the creation of new biclusters with better quality. To evaluate its performance, an experimental study was done on real microarray datasets. These experimentations show that our algorithm extracts high quality biclusters with highly correlated genes that are particularly involved in specific ontology structure.


Biclustering Evolutionary algorithm Crossover method Microarray data Data mining 


  1. 1.
    Ayadi, W., Maatouk, O., Bouziri, H.: Evolutionary biclustering algorithm of gene expression data. In: The Proceedings of the 23th International Workshop on Database and Expert Systems Applications, DEXA 2012, pp. 206–210. IEEE, Vienna (2012)CrossRefGoogle Scholar
  2. 2.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. In: RECOMB 2002: Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 49–57 (2002)Google Scholar
  3. 3.
    Bergmann, S., Ihmels, J., Barkai, N.: Defining transcription modules using large-scale gene expression data. Bioinformatics 20(13), 1993–2003 (2004)CrossRefGoogle Scholar
  4. 4.
    Berrer, D., Dubitzky, W., Draghici, S.: A practical approach to microarray data analysis, ch. 1, pp. 46–53. Kluwer Academic Publishers (2003)Google Scholar
  5. 5.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  6. 6.
    Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25–29 (2000)Google Scholar
  7. 7.
    de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Transactions on Knowledge & Data Engineering 18(5), 590–602 (2006)CrossRefGoogle Scholar
  9. 9.
    Divina, F., Aguilar-Ruiz, J.S.: A multi-objective approach to discover biclusters in microarray data. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 385–392 (2007)Google Scholar
  10. 10.
    Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 11(12), 4241–4257 (2000)CrossRefGoogle Scholar
  11. 11.
    Liu, J., Li, Z., Hu, X., Chen, Y.: Biclustering of microarray data with mospo based on crowding distance. BMC Bioinformatics 10(4), 9 (2009)Google Scholar
  12. 12.
    Liu, X., Wang, L.: Computing the maximum similarity bi-clusters of gene expression data. Bioinformatics 23(1), 50–56 (2007)CrossRefGoogle Scholar
  13. 13.
    Madeira, S.C., Teixeira, M.C., Sá-Correia, I., Oliveira, A.L.: Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7(1), 153–165 (2010)CrossRefGoogle Scholar
  14. 14.
    Martinez, R., Pasquier, N., Pasquier, C., Collard, M.: Analyse des groupes de gènes co-exprimés (AGGC): un outil automatique pour l’interprétation des expériences de biopuces. In: SFC 2006 Conference (2006)Google Scholar
  15. 15.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering ofgene expression data. Pattern Recognition 39(12), 2464–2477 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Murali, T.M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Pacific Symposium on Biocomputing, vol. 8, pp. 77–88 (2003)Google Scholar
  17. 17.
    Nepomuceno, J.A., Troncoso, A., Aguilar–Ruiz, J.S.: A hybrid metaheuristic for biclustering based on scatter search and genetic algorithms. In: Kadirkamanathan, V., Sanguinetti, G., Girolami, M., Niranjan, M., Noirel, J. (eds.) PRIB 2009. LNCS (LNBI), vol. 5780, pp. 199–210. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Nepomuceno, J.A., Troncoso, A., Aguilar-Ruiz, J.S.: Evolutionary metaheuristic for biclustering based on linear correlations among genes. In: SAC 2010, Switzerland, pp. 22–26 (2010)Google Scholar
  19. 19.
    Nepomuceno, J.A., Troncoso, A., Aguilar-Ruiz, J.S.: Biclustering of gene expression data by correlation-based scatter search. BioData Mining 4(3) (2011)Google Scholar
  20. 20.
    Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)CrossRefGoogle Scholar
  21. 21.
    Robinson, P.N., Wollstein, A., Bohme, U., Beattie, B.: Ontologizing geneexpression microarray data: characterizing clusters with gene ontology. Bioinformatics 20(6), 979–981 (2004)CrossRefGoogle Scholar
  22. 22.
    Seridi, K., Jourdan, L., Talbi, G.: Multi-objective evolutionary algorithm for biclustering in microarrays data. In: IEEE Congress of Evolutionary Computation, pp. 2593–2599 (2011)Google Scholar
  23. 23.
    Shyama, D., Sumam, M.I.: Application of greedy randomized adaptive search procedure to the biclustering of gene expression data. International Journal of Computer Applications 2(3), 0975–8887 (2010)Google Scholar
  24. 24.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, 136–144 (2002)CrossRefGoogle Scholar
  25. 25.
    Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)CrossRefGoogle Scholar
  26. 26.
    Valente-Freitas, A., Ayadi, W., Elloumi, M., Oliveira, J.L., Hao, J.K.: A survey on biclustering of gene expression data. In: Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data, pp. 591–608 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ons Maâtouk
    • 1
    • 2
  • Wassim Ayadi
    • 2
    • 3
  • Hend Bouziri
    • 1
  • Beatrice Duval
    • 2
  1. 1.LARODEC Laboratory, ISG TunisUniversité de TunisTunisia
  2. 2.LERIAUniversité d’AngersAngersFrance
  3. 3.LaTICE Laboratory, ESSTTUniversité de TunisTunisia

Personalised recommendations