Optimal Scale in a Hierarchical Segmentation Method for Satellite Images

  • David Fonseca-Luengo
  • Angel García-Pedrero
  • Mario Lillo-Saavedra
  • Roberto Costumero
  • Ernestina Menasalvas
  • Consuelo Gonzalo-Martín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)


Even though images with high and very high spatial resolution exhibit higher levels of detailed features, traditional image processing algorithms based on single pixel analysis are often not capable of extracting all their information. To solve this limitation, object-based image analysis approaches (OBIA) have been proposed in recent years.

One of the most important steps in the OBIA approach is the segmentation process; whose aim is grouping neighboring pixels according to some homogeneity criteria. Different segmentations will allow extracting different information from the same image in multiples scales. Thus, the major challenge is to determine the adequate scale segmentation that allows to characterize different objects or phenomena, in a single image.

In this work, an adaptation of SLIC algorithm to perform a hierarchical segmentation of the image is proposed. An evaluation method consisting of an objective function that considers the intra-variability and inter-heterogeneity of the object is implemented to select the optimal size of each region in the image. The preliminary results show that the proposed algorithm is capable to detect objects at different scale and represent in a single image, allowing a better comprehension of the land-cover, their objects and phenomena.


Remote sensing hierarchical segmentation multi-scale high resolution images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M.: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information. ISPRS-J. Photogramm. Remote Sens. 58(3), 239–258 (2004)CrossRefGoogle Scholar
  2. 2.
    Homeyer, A., Schwier, M.: H.H.: A Generic Concept for Object-based Image Analysis. In: VISAPP 2010, pp. 530–533 (2010)Google Scholar
  3. 3.
    Blaschke, T.: Object based image analysis for remote sensing. ISPRS-J. Photogramm. Remote Sens. 65(1), 2–16 (2010)CrossRefGoogle Scholar
  4. 4.
    Hay, G., Castilla, G.: Geographic object-based image analysis (GEOBIA): A new name for a new discipline. Object-Based Image Analysis, 75–89 (2008)Google Scholar
  5. 5.
    Chitiboi, T., Hennemuth, A., Tautz, L., Stolzmann, P., Donati, O.F., Linsen, L., Hahn, H.K.: Automatic detection of myocardial perfusion defects using object-based myocardium segmentation. In: Computing in Cardiology Conference (CinC), 2013, pp. 639–642 (2013)Google Scholar
  6. 6.
    Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features. IEEE Trans. Med. Imaging 31(2), 474–486 (2012)CrossRefGoogle Scholar
  7. 7.
    Vieira, M., Formaggio, A., Rennó, C., Atzberger, C., Aguiar, D., Mello, M.: Object based image analysis and data mining applied to a remotely sensed landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 123, 553–562 (2012)CrossRefGoogle Scholar
  8. 8.
    Gao, Y., Mas, J.: A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions. Online J. Earth Sci. 2(1), 27–35 (2008)Google Scholar
  9. 9.
    Yan, G., Mas, J.F., Maathuis, B., Xiangmin, Z., Van Dijk, P.: Comparison of pixel-based and object-oriented image classification approachesa case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote Sens. 27(18), 4039–4055 (2006)CrossRefGoogle Scholar
  10. 10.
    Levin, S.: The problem of pattern and scale in ecology: The Robert H, MacArthur award lecture. Ecology 73(6), 1943–1967 (1992)CrossRefGoogle Scholar
  11. 11.
    Burnett, C., Blaschke, T.: A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecol. Model. 168(3), 233–249 (2003)CrossRefGoogle Scholar
  12. 12.
    Espindola, G., Camara, G., Reis, I., Bins, L., Monteiro, A.: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 27(14), 3035–3040 (2006)CrossRefGoogle Scholar
  13. 13.
    Kim, M., Madden, M., Warner, T.A., et al.: Forest type mapping using object-specific texture measures from multispectral ikonos imagery: Segmentation quality and image classification issues. Photogramm. Eng. Remote Sens. 75(7), 819–829 (2009)CrossRefGoogle Scholar
  14. 14.
    Zhou, W., Troy, A.: Development of an object-based framework for classifying and inventorying human-dominated forest ecosystems. Int. J. Remote Sens. 30(23), 6343–6360 (2009)CrossRefGoogle Scholar
  15. 15.
    Trias-Sanz, R., Stamon, G., Louchet, J.: Using colour, texture, and hierarchial segmentation for high-resolution remote sensing. ISPRS-J. Photogramm. Remote Sens. 63(2), 156–168 (2008)CrossRefGoogle Scholar
  16. 16.
    Johnson, B., Xie, Z.: Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS-J. Photogramm. Remote Sens. 66(4), 473–483 (2011)CrossRefGoogle Scholar
  17. 17.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Fonseca-Luengo
    • 1
  • Angel García-Pedrero
    • 2
  • Mario Lillo-Saavedra
    • 1
  • Roberto Costumero
    • 2
  • Ernestina Menasalvas
    • 2
  • Consuelo Gonzalo-Martín
    • 2
  1. 1.Faculty of Agricultural EngineeringUniversidad de ConcepciónChillánChile
  2. 2.Centro de Tecnología Biomédica at Universidad Politécnica de Madrid Campus MontegancedoMadridSpain

Personalised recommendations