Advertisement

SnS: A Novel Word Sense Induction Method

  • Marek Kozłowski
  • Henryk Rybiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)

Abstract

The paper is devoted to the word sense induction problem. We propose a knowledge-poor method, called SenseSearcher (SnS), which induces senses of words from text corpora, based on closed frequent sets. The algorithm discovers a hierarchy of senses, rather than a flat list of concepts, so the results are easier to comprehend. We have evaluated the SnS quality by performing experiments for web search result clustering task with the datasets from SemEval-2013 Task 11.

Keywords

word sense induction sense based clustering text mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Navigli, R., Vannella, D.: SemEval-2013 Task 11: Word Sense Induction and Disambiguation within an End-User Applications. In: Proc. 7th Int’l SemEval Workshop, The 2nd Joint Conf. on Lexical and Comp. Semantics (2013)Google Scholar
  2. 2.
    Miller, G., Chadorow, M., Landes, S., Leacock, C., Thomas, R.: Using a semantic concordance for sense identification. In: Proceedings of the ARPA Human Language Technology Workshop, pp. 240–243 (1994)Google Scholar
  3. 3.
    Mihalcea, R., Moldovan, D.: Automatic Generation of a Coarse Grained WordNet. In: Proc. of NAACL Workshop on WordNet and Other Lexical Resources (2001)Google Scholar
  4. 4.
    Navigli, R.: Word sense disambiguation: A survey. ACM Computing Surveys 41(2) (2009)CrossRefGoogle Scholar
  5. 5.
    Schutze, H.: Automatic word sense discrimination. Computational Linguistics - Special Issue on Word Sense Disambiguation 24(1) (1998)Google Scholar
  6. 6.
    Pedersen, T., Bruce, R.: Knowledge lean word sense disambiguation. In: Proceedings of the 15th National Conference on Artificial Intelligence (1998)Google Scholar
  7. 7.
    Landauer, T., Dumais, S.: A solution to Platos problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychology Review (1997)Google Scholar
  8. 8.
    Pantel, P., Lin, D.: Discovering word senses from text. In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining (2002)Google Scholar
  9. 9.
    Brody, S., Lapata, M.: Bayesian word sense induction. In: Proceedings of EACL 2009 (2009)Google Scholar
  10. 10.
    Veronis, J.: Hyperlex: lexical cartography for information retrieval. Computer Speech and Language (2004)Google Scholar
  11. 11.
    Agirre, E., Soroa, A.: Ubc-as: A graph based unsupervised system for induction and classification. In: Proc. 4th Int’l Workshop on Semantic Evaluations (2007)Google Scholar
  12. 12.
    Dorow, B., Widdows, D.: Discovering corpus-specific word senses. In: Proceedings of the 10th Conference of the European Chapter of the ACL (2003)Google Scholar
  13. 13.
    Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of the 14th European Conference on Artificial Intelligence (2000)Google Scholar
  14. 14.
    Rybiński, H., Kryszkiewicz, M., Protaziuk, G., Kontkiewicz, A., Marcinkowska, K., Delteil, A.: Discovering word meanings based on frequent termsets. In: Raś, Z.W., Tsumoto, S., Zighed, D.A. (eds.) MCD 2007. LNCS (LNAI), vol. 4944, pp. 82–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Nykiel, T., Rybinski, H.: Word Sense Discovery for Web Information Retrieval. In: Proc. 4th Int’l Workshop on Mining Complex Data (2008)Google Scholar
  16. 16.
    Di Marco, A., Navigli, R.: Clustering and Diversifying Web Search Results with Graph-Based Word Sense Induction. Computational Linguistics (2013)Google Scholar
  17. 17.
    Protaziuk, G., Kryszkiewicz, M., Rybiński, H., Delteil, A.: Discovering compound and proper nouns. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 505–515. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Zaki, M., Hsiao, C.: CHARM: An efficient algorithm for closed itemset mining. In: Proceedings 2002 SIAM Int. Conf. Data Mining (2002)Google Scholar
  19. 19.
    Zaki, M.: Closed itemset mining and non-redundant association rule mining. In: Encyclopedia of Database Systems (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marek Kozłowski
    • 1
  • Henryk Rybiński
    • 1
  1. 1.Warsaw University of TechnologyWarsawPoland

Personalised recommendations