Advertisement

A Definition of Structured Rough Set Approximations

  • Yiyu Yao
  • Mengjun Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)

Abstract

Pawlak lower and upper approximations are unions of equivalence classes. By explicitly expressing individual equivalence classes in the approximations, Bryniarski uses a pair of families of equivalence classes as rough set approximations. Although the latter takes into consideration of structural information of the approximations, it has not received its due attention. The main objective of this paper is to further explore the Bryniarski definition and propose a generalized definition of structured rough set approximations by using a family of conjunctively definable sets. The connections to covering-based rough sets and Grzymala-Busse’s LERS systems are investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryniarski, E.: A calculus of rough sets of the first order. Bulletin of the Polish Academy of Sciences, Mathematics 37, 71–78 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Buszkowski, W.: Approximation spaces and definability for incomplete information systems. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 115–122. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)CrossRefGoogle Scholar
  4. 4.
    Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)zbMATHGoogle Scholar
  5. 5.
    Grzymala-Busse, J.W.: LERS - A system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)CrossRefGoogle Scholar
  6. 6.
    Hunt, E.B.: Concept Learning: An Information Processing Problem. John Wiley and Sons Inc., New York (1962)CrossRefGoogle Scholar
  7. 7.
    Marek, W., Pawlak, Z.: Information storage and retrieval systems: Mathematical foundations. Theoretical Computer Science 1, 331–354 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20, 469–483 (1984)CrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. International Journal of Approximate Reasoning 55, 469–485 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van Mechelen, I., Hampton, J., Michalski, R., Thenus, P.: Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic Press, New York (1993)Google Scholar
  13. 13.
    Yao, Y.Y.: A note on definability and approximations. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 274–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Yao, Y.Y.: A partition model of granular computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Yao, Y.Y., Deng, X.F.: A granular computing paradigm for concept learning. In: Ramanna, S., Jain, L.C., Howlett, R.J. (eds.) Emerging Paradigms in ML. SIST, vol. 13, pp. 307–326. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Yao, Y.Y., Fu, R.: The concept of reducts in Pawlak three-step rough set analysis. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 53–72. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Yao, Y.Y., Yao, B.X.: Covering based rough set approximations. Information Sciences 200, 91–107 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Żakowski, W.F.: Approximations in the space (U, Π). Demonstratio Mathematica 16, 761–769 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yiyu Yao
    • 1
  • Mengjun Hu
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations