A New Clustering Algorithm Based on Chameleon Army Strategy

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 265)

Abstract

In this paper we present a new clustering algorithm based on a new heuristic we call Chameleon Army. This heuristic simulates a Army stratagem and Chameleon behavior. The proposed algorithm is implemented and tested on well known dataset. The obtained results are compared to those of the algorithms K-means, PSO, and PSO-kmeans. The results show that the proposed algorithm gives better clusters.

Keywords

Clustering algorithm K-means PSO metaheuristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: International Conference on Management data, pp. 94–105. ACM SIGMOD (1998)Google Scholar
  2. 2.
    Nagesh, H., Goil, S.: Choudhary: MAFIA. Efficient and scalable subspace clustering for very large data sets. Technical Report CPDC-TR-9906-010 (1999)Google Scholar
  3. 3.
    Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wave cluster: A multi-resolution clustering approach for very large spatial databases. In: 24th International Conference on Very Large Data Bases, New York City, USA, pp. 428–439 (1998)Google Scholar
  4. 4.
    Kaufman, L., Rousseeuw, P.J.: Finding groups in data. An Introduction to Cluster Analysis. John Wiley & Sons (1990)Google Scholar
  5. 5.
    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy: the Principles and Practice of Numerical Classification. W. H. Freeman and Company, San Francisco (1973)MATHGoogle Scholar
  6. 6.
    Vazirani, V.V.: Algorithmes d’approximation. Collection IRIS. Springer (2006)Google Scholar
  7. 7.
    Colanzi, T.E., Assunção, W.K.K.G., Pozo, A.T.R., Vendramin, A.C.B.K., Pereira, D.A.B., Zorzo, C.A., de Paula Filho, P.L.: Application of Bio-inspired Metaheuristics in the Data Clustering Problem. Clei Electronic Journal 14(3) (2011)Google Scholar
  8. 8.
    Merz, C.J., Blake, C.L.: UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/-mlearn/MLRepository.html
  9. 9.
    Jain, A.K.: Data clustering: 50 Years beyond K-means. Pattern Recognition Letters 31, 651–666 (2010)CrossRefGoogle Scholar
  10. 10.
    Xiaohui, C., Potok, T.E.: Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm. Applied Software Engineering Research Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831- 6085, USA (2005)Google Scholar
  11. 11.
    Likas, A., Vlassis, M., Verbeek, J.: The global k-means clustering algorithm. Pattern Recognition 36, 451–461 (2003)CrossRefGoogle Scholar
  12. 12.
    Milligan, G.W.: The validation of four ultrametric clustering algorithms. Pattern Recognition 12, 41–50 (1980)CrossRefGoogle Scholar
  13. 13.
    Bradley, P.S., Fayyad, U.M.: Refining initial points for K-Means clustering. In: 15th International Conf. on Machine Learning, pp. 91–99. Morgan Kaufmann, San Francisco (1998)Google Scholar
  14. 14.
    Mirkin, B.: Clustering for data mining: A data recovery approach. Chapman and Hall, London (2005)CrossRefGoogle Scholar
  15. 15.
    Kwedlo, W., Iwanowicz, P.: Using Genetic Algorithm for Selection of Initial Cluster Centers for the K-Means Method. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 165–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Alireza, A., Hamidreza, M.: Combining PSO and k-means to Enhance Data Clustering. In: International Symposium on Telecommunication, Tehran, vol. 1 & 2, pp. 688–691 (2008)Google Scholar
  17. 17.
    Saatchi, S., Hung, C.-C.: Hybridization of the Ant Colony Optimization with the K-Means Algorithm for Clustering. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 511–520. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Taher, N., Babak, A.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Applied Soft Computing 10, 183–197 (2010)CrossRefGoogle Scholar
  19. 19.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 224–227 (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Fac-Sciences, Depart. Computer ScienceUniv-SetifSetifAlgeria
  2. 2.LRIAUSTHBAlgiersAlgeria

Personalised recommendations