Intelligent Echocardiographic Video Analyzer Using Parallel Algorithms

  • S. Nandagopalan
  • T. S. B. Sudarshan
  • N. Deepak
  • N. Pradeep
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 265)

Abstract

This paper proposes an intelligent framework to accurately analyze these echo images in order to discover disease category and assess the severity automatically. Typically, each video consists of 90-100 frames of 2D echo, color Doppler image video, and several .jpg images. Our framework consists of parallel algorithms developed under OpenMP environment. The major tasks are cardiac boundary tracing, quantifying the heart chambers and extracting 2D features, and other features required for computing statistical features and build a classifier model for categorization. Segmentation of an echo image is done using parallel implementation of K-Means algorithm and they are boundary extracted using active contour method. Bayesian model is used to classify a given patient into normal or abnormal. The experiment involves videos taken from 60 normal and abnormal patients from a local cardiology Hospital. The results obtained with our algorithms outperformed with respect to the results that have already been reported.

Keywords

Echocardiography Parallel K-Means OpenMP Bayesian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kraj, P., Sharma, A., Garge, N., Podolsky, R.: ParaKMeans: Implementation of a parallelized K-means algorithm suitable for general laboratory. BMC Bioinformatics 2008, 1–13 (2008), doi:10.1186/1471-2105-9-200CrossRefGoogle Scholar
  2. 2.
    Kantabutra, S., Couch, A.L.: Parallel K-means Clustering Algorithm on NOWs. Technical Journal 1(6), 243–248 (2000)Google Scholar
  3. 3.
    Kim, W.: Parallel Clustering Algorithms: Survey (2009), http://www.cs.gsu.edu/~wkim/index_files/SurveyParallelClustering.pdf
  4. 4.
    Joshi, M.N.: Parallel K - Means Algorithm on Distributed Memory Multiprocessors (2003)Google Scholar
  5. 5.
  6. 6.
    Nandagopalan, S., et al.: Automatic Segmentation and Ventricular Border Detection of 2D Echocardiographic Images Combining K-Means Clustering and Active Contour Model. In: Proc. International Conf. IEEE Computer Society and ACM Digital Library, ICSEM 2010, Bangkok, Thailand, April 23-25, pp. 447–451 (2010)Google Scholar
  7. 7.
    Nandagopalan, S., et al.: A Novel Approach to Medical Image Segmentation. J. Computer Science 7(5), 657–663 (2011)CrossRefGoogle Scholar
  8. 8.
    Nandagopalan, S., Adiga, B.S., Sudarshan, T.S.B., Dhanalakshmi, C., Manjunath, C.N.: A Naïve-Bayesian Methodology to Classify Echocardiographic Images through SQL. In: Theeramunkong, T., Kunifuji, S., Sornlertlamvanich, V., Nattee, C. (eds.) KICSS 2010. LNCS(LNAI), vol. 6746, pp. 155–165. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Nandagopalan, S., et al.: SQL Based Cardiovascular Ultrasound Image Classification. International J. Data Mining and Bioinformatics (2011)Google Scholar
  10. 10.
    Ordonez, C.: Integrating K-Means clustering with a Relational DBMS using SQL. IEEE Transactions on Knowledge and Data Engineering 18(2), 188–201 (2006)CrossRefGoogle Scholar
  11. 11.
    Chang, W.C., Jiebo, L., Kevin, J.P.: Image segmentation via adaptive K-Mean clustering and knowledge-based morphological operations with bio-medical applications. IEEE Transactions on Image Processing 7(12), 1673–1683 (1998)CrossRefGoogle Scholar
  12. 12.
    Alsabti, K., Ranka, S., Singh, V.: An efficient K-Means clustering algorithm. In: Proceedings of IPPS/SPDP Workshop on High Performance Data Mining (1998)Google Scholar
  13. 13.
    Santos, J.B., Celorico, D., Varandas, J., Dias, J.: Automatic segmentation of echocardiographic Left Ventricular images by windows adaptive Thresholds. In: International Congress on Ultrasonics, Vienna (April 2007)Google Scholar
  14. 14.
    Chunming, L., Chenyang, X., Changfeng, G., Martin, D.F.: Level set evolution without re-initialization: A new variational formulation. In: Proc. of International Conf. on Computer Vision, pp. 259–268 (1987)Google Scholar
  15. 15.
    Donna, J.: Williams, Mubarak Shah: A fast algorithm for active contour and curvature estimation. IEEE Transactions on Image Understanding CVGIP 55(1), 14–26 (1992)CrossRefGoogle Scholar
  16. 16.
    Kass, M., Witkin, A.: Snakes: Active Contour Models. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 (2005)Google Scholar
  17. 17.
    Lacerda, S.G., et al.: Left Ventricle segmentation in echocardiography using a radial-search-based image processing algorithm. In: IEEE EMBS Conference, Vancouver, Canada, pp. 222–225 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Nandagopalan
    • 1
  • T. S. B. Sudarshan
    • 2
  • N. Deepak
    • 3
  • N. Pradeep
    • 3
  1. 1.Department of Computer Science and EngineeringBangalore Institute of TechnologyBangaloreIndia
  2. 2.Department of Computer Science & EngineeringAmrita Vishwa Vidyapeetham, Amrita School of EngineeringBangaloreIndia
  3. 3.Network Division Eshamount TechnologiesBangaloreIndia

Personalised recommendations