Skip to main content

Wake-up Receiver System Level Design

  • Chapter
  • First Online:
Wake-up Receiver Based Ultra-Low-Power WBAN

Abstract

The modulation and wake-up receiver specifications are studied in this chapter. In the first section a state-of-the-art low-power receiver literature survey is presented. Wideband-FSK modulation is proposed to be used in conjunction with a zero-IF architecture, since it alleviates the receiver imperfections such as 1/f noise, DC offset, I/Q imbalance and phase-noise problems. A mathematical model for the wideband-FSK modulation including is derived in this chapter. It is used to model the effects of receiver imperfections on the SNR and bit-error-rate at the output of the receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The phase-noise spectrum is defined relative to the carrier power and given in dBc/Hz. Thus the integrated spectral density should be one.

References

  1. Ayers J, Mayaram K, Fiez TS (2007) A low power BFSK super-regenerative transceiver. In: Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp 3099–3102

    Google Scholar 

  2. Bae J, Cho N, Yoo HJ (2009) A 490\(\upmu \)W fully MICS compatible FSK transceiver for implantable devices. In: VLSI Circuits, 2009 Symposium on, IEEE, pp 36–37

    Google Scholar 

  3. Bae J, Yan L, Yoo HJ (2011) A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. Solid-State Circuits, IEEE Journal of 46(4):928–937, DOI 10.1109/JSSC.2011.2109450

    Google Scholar 

  4. Bar-David I, Shamai S (1988) On the Rice model of noise in FM receivers. IEEE Trans Inf Theory 34(6), pp. 1406–1419, DOI 10.1109/18.21280

    Google Scholar 

  5. Blachman NM (1949) The demodulation of FM carrier and random noise by a limiter and discriminator. Journal of Applied Physics 20:38–47

    Google Scholar 

  6. Blachman NM, Roberts JH (1974) F.M. click rates: a simple derivation. Electronics Letters 10(15), pp. 305–307, DOI 10.1049/el:19740242

    Google Scholar 

  7. Bohorquez JL, Chandrakasan AP, Dawson JL (2009) A 350 \(\upmu \)W CMOS MSK transmitter and 400\(\upmu \)W OOK super-regenerative receiver for medical implant communications. Solid-State Circuits, IEEE Journal of 44(4):1248–1259

    Google Scholar 

  8. Cook BW, Berny A, Molnar A, Lanzisera S, Pister KS (2006) Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. Solid-State Circuits, IEEE Journal of 41(12):2757–2766

    Google Scholar 

  9. Couch LW (2001) Digital and Analog Communication Systems, 6th edn. Prentice-Hall. Inc.

    Google Scholar 

  10. Demir A (2006) Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and 1/f noise. IEEE Trans Circuits Syst I 53(9): 1869–1884, DOI 10.1109/TCSI.2006.881184

    Google Scholar 

  11. Dharmawansa P, Rajatheva N, Tellambura C (2009) Envelope and phase distribution of two correlated gaussian variables. IEEE Trans Commun 57(4): 915–921, DOI 10.1109/TCOMM.2009.04.070065

    Google Scholar 

  12. Drago S, Leenaerts D, Sebastiano F, Breems L, Makinwa K, Nauta B (2010) A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with -82dBm sensitivity for crystal-less wireless sensor nodes. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE, International, pp 224–225, DOI 10.1109/ISSCC.2010.5433955

    Google Scholar 

  13. Forestieri E, Prati G (1994) FM click statistics in the presence of phase noise. IEEE Trans Commun 42(234): 549–561, DOI 10.1109/TCOMM.1994.577081

    Google Scholar 

  14. Hajimiri A, Lee TH (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid-State Circuits 33(2): 179–194, DOI 10.1109/4.658619

    Google Scholar 

  15. Hajimiri A, Limotyrakis S, Lee TH (1999) Jitter and phase noise in ring oscillators. IEEE J Solid-State Circuits 34(6): 790–804, DOI 10.1109/4.766813

    Google Scholar 

  16. Heiberg A, Brown T, Fiez T, Mayaram K (2011) A 250 mV, 352 \(\upmu \)W GPS receiver RF front-end in 130 nm CMOS. Solid-State Circuits, IEEE Journal of 46(4):938–949, DOI 10.1109/JSSC.2011.2109470

    Google Scholar 

  17. Huang X, Rampu S, Wang X, Dolmans G, de Groot H (2010) A 2.4GHz/915MHz 51 \(\upmu \)W wake-up receiver with offset and noise suppression. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE, International, pp 222–223, DOI 10.1109/ISSCC.2010.5433958

    Google Scholar 

  18. Huang X, Harpe P, Dolmans G, de Groot H (2011) A 915MHz ultra-low power wake-up receiver with scalable performance and power consumption. In: ESSCIRC (ESSCIRC), 2011 Proceedings of the, pp 543–546, doi: 10.1109/ESSCIRC.2011.6044942

    Google Scholar 

  19. Kouwenhoven MHL (1998) High-performance frequency-demodulation systems. PhD thesis, Delft University of Technology, Mekelweg 4, 2628CD Delft, ISBN 90-407-1641-2 / CIP

    Google Scholar 

  20. van Langevelde R, van Elzakker M, van Goor D, Termeer H, Moss J, Davie A (2009) An ultra-low-power 868/915 MHz RF transceiver for wireless sensor network applications. In: Radio Frequency Integrated Circuits Symposium, 2009. RFIC 2009. IEEE, pp 113–116, DOI 10.1109/RFIC.2009.5135502

    Google Scholar 

  21. Lee TC, Chen CC (2006) A mixed-signal GFSK demodulator for Bluetooth. In: IEEE Transactions on Circuits and Systems II, vol 53, pp 197–201

    Google Scholar 

  22. Lont M, Milosevic D, van Roermund A, Dolmans G (2011) Requirement driven low-power LC and ring oscillator design. In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, pp 1129–1132, DOI 10.1109/ISCAS.2011.5937769

    Google Scholar 

  23. Lont M, Milosevic D, van Roermund A, Dolmans G (2011) Ultra-low power FSK wake-up receiver front-end for body area networks. In: Radio Frequency Integrated Circuits Symposium (RFIC), 2011 IEEE, pp 1–4, DOI 10.1109/RFIC.2011.5940697

    Google Scholar 

  24. Mazo J, Shamai S (1990) Theory of FM clicks with brownian motion phase noise. Communications, IEEE Transactions on 38(7):1022–1030, DOI 10.1109/26.57500

    Google Scholar 

  25. Middleton D (1996) An Introduction to Statistical Communication Theory. IEEE Press, reprint

    Google Scholar 

  26. Molnar A, Lu B, Lanzisera S, Cook B, Pister K (2004) An ultra-low power 900 MHz RF transceiver for wireless sensor networks. In: Custom Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004, pp 401–404, DOI 10.1109/CICC.2004.1358833

    Google Scholar 

  27. Nguyen TK, Kim J, Seong NS, Kim NS, Le VH, Duong QH, Han SK, Lee SG (2007) A low power CMOS transceiver for 915 MHz-band IEEE 802.15.4b standard. In: Solid-State Circuits Conference, 2007. ASSCC ’07. IEEE Asian, pp 168–171, DOI 10.1109/ASSCC.2007.4425757

    Google Scholar 

  28. Oetting J (1979) A comparison of modulation techniques for digital radio. Communications, IEEE Transactions on 27(12):1752–1762, DOI 10.1109/TCOM.1979.1094370

    Google Scholar 

  29. Oh TSHS, Yoon E, Hong S (2007) A low-power 2.4-GHz current-reused receiver front-end and frequency source for wireless sensor network. Solid-State Circuits, IEEE Journal of 42(5):1012–1022

    Google Scholar 

  30. Otis B, Chee Y, Rabaey J (2005) A 400\(\upmu \)W-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks. In: Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE, International, vol 1, pp 396–606

    Google Scholar 

  31. Pawula R (1981) On the theory of error rates for narrow-band digital FM. Communications, IEEE Transactions on 29(11):1634–1643, DOI 10.1109/TCOM.1981.1094912

    Google Scholar 

  32. Pawula R (1988) Refinements to the theory of error rates for narrow-band digital FM. Communications, IEEE Transactions on 36(4):509–513, DOI 10.1109/26.2778

    Google Scholar 

  33. Peiris V, Arm C, Bories S, Cserveny S, Giroud F, Graber P, Gyger S, Le Roux E, Melly T, Moser M, Nys O, Pengg F, Pfister PD, Raemy N, Ribordy A, Ruedi PF, Ruffieux D, Sumanen L, Todeschin S, Volet P (2005) A 1 v 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18 mu;m cmos. In: Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE, International, pp 258–259 Vol. 1, DOI 10.1109/ISSCC.2005.1493967

    Google Scholar 

  34. Pletcher N, Gambini S, Rabaey J (2007) A 65\(\upmu \)W, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes. In: Custom Integrated Circuits Conference, 2007. CICC ’07. IEEE, pp 539–542

    Google Scholar 

  35. Pletcher NM, Gambini S, Rabaey JM (2008) A 2GHz 52\(\upmu \)W wake-up receiver with -72dBm sensitivity using uncertain-IF architecture. In: Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp 524–633

    Google Scholar 

  36. Rice SO (1944) Mathematical analysis of random noise-I. The Bell System Technical Journal 23:282–332

    Google Scholar 

  37. Rice SO (1945) Mathematical analysis of random noise-II. The Bell System Technical Journal 24:46–156

    Google Scholar 

  38. Rice SO (1963) Noise in FM Receivers, New York: Wiley, chap 25, pp 395–422. Time Series Analysis

    Google Scholar 

  39. Saitou M, Kawabata M, Akaiwa Y (1995) Direct conversion receiver for 2- and 4-level FSK signals. In: Universal Personal Communications. 1995. Record., 1995 Fourth IEEE International Conference on, pp 392–396, DOI 10.1109/ICUPC.1995.496928

    Google Scholar 

  40. Scales W (1973) Performance of FSK/FM for mobile radioteleprinter applications. In: IEEE Vehicular Technology Conference, vol 24, pp 37–43

    Google Scholar 

  41. Soer MCM, Klumperink EAM, Ru Z, van Vliet FE, Nauta B (2009) A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving \(>\)11dbm IIP3 and \(<\)6.5db nf. ISSCC

    Google Scholar 

  42. Song T, Oh HS, Yoon E, Hong S (2007) A low-power 2.4-GHz current-reused receiver front-end and frequency source for wireless sensor network. Solid-State Circuits, IEEE Journal of 42(5):1012–1022, DOI 10.1109/JSSC.2007.894338

    Google Scholar 

  43. Ulrich L, Rohde JCW (2001) Communications Receivers: DPS, Software Radios, and Design, 3rd edn. McGraw-Hill

    Google Scholar 

  44. Valkama M, Renfors M, Koivunen V (2001) Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Transactions on Signal Processing 49:2335–2344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Lont .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lont, M., Milosevic, D., van Roermund, A. (2014). Wake-up Receiver System Level Design. In: Wake-up Receiver Based Ultra-Low-Power WBAN. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-06450-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06450-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06449-9

  • Online ISBN: 978-3-319-06450-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics