Restrictive Cardiomyopathy: Clinical Assessment and Imaging in Diagnosis and Patient Management

  • Marco MerloEmail author
  • Elena Abate
  • Bruno Pinamonti
  • Giancarlo Vitrella
  • Enrico Fabris
  • Francesco Negri
  • Francesca Brun
  • Manuel Belgrano
  • Rossana Bussani
  • Gianfranco Sinagra


The main difference between restrictive cardiomyopathy (RCM) and the other cardiomyopathies (CMP) is that its diagnosis and definition depend on functional rather than morphologic criteria. All causes of diastolic dysfunction are included in the differential diagnosis of RCM, in particular, infiltrative/storage CMP and constrictive pericarditis (CP). The recognition of CP is clinically important, as it is potentially curable with surgery, whereas RCM has no specific therapy. Rare forms characterized by endomyocardial involvement with severe fibrosis, with or without eosinophilic infiltration, are included within the spectrum of RCM disease. It must be noted that, although RCM is the least common CMP and extremely rarely encountered in clinical practice, its diagnosis must be an exclusion diagnosis, and it is important to exclude all the other causes of restrictive filling in order to manage these patients with the most appropriate and possibly specific therapy.


Left Ventricle Cardiac Magnetic Resonance Late Gadolinium Enhancement Left Atrial Tissue Doppler Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Clip 19.1a

(MOV 1.14 MB)

317040_1_En_19_MOESM2_ESM.mp4 (974 kb)
Clip 19.1b (MP4 973 kb)
Clip 19.2

(MOV 1.21 MB)

Clip 19.3

(MOV 1.19 MB)

Clip 19.4

(MOV 2.27 MB)

Clip 19.5

(MOV 1.39 MB)

Clip 19.6

(MOV 1.37 MB)


  1. 1.
    Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276PubMedCrossRefGoogle Scholar
  2. 2.
    Appleton CP, Hatle LK, Popp RL (1988) Demonstration of restrictive ventricular physiology by Doppler echocardiography. J Am Coll Cardiol 22:757–768CrossRefGoogle Scholar
  3. 3.
    Appleton CP, Hatle LK, Popp RL (1988) Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol 12:426–440PubMedCrossRefGoogle Scholar
  4. 4.
    Pinamonti B, Finocchiaro G, Moretti M, Merlo M, Sinagra G (2011) Diastolic dysfunction in cardiomyopathies. J Cardiovasc Echogr 21:157–165CrossRefGoogle Scholar
  5. 5.
    Nihoyannopoulos P, Dawson D (2009) Restrictive cardiomyopathies. Eur J Echocardiogr 10:23–33CrossRefGoogle Scholar
  6. 6.
    Schutte DP, Essop MR (2001) Clinical profile and outcome of idiopathic restrictive cardiomyopathy. Circulation 103:E83PubMedCrossRefGoogle Scholar
  7. 7.
    Siegel RJ, Shah PK, Fishbein MC (1984) Idiopathic restrictive cardiomyopathy. Circulation 70:165–169Google Scholar
  8. 8.
    Ammash NM, Seward JB, Bailey KR et al (2000) Clinical profile and outcome of idiopathic restrictive cardiomyopathy. Circulation 101:2490–2496PubMedCrossRefGoogle Scholar
  9. 9.
    Daneshvar DA, Kedia G, Fishbein MC et al (2012) Familial restrictive cardiomyopathy with 12 affected family members. Am J Cardiol 109:445–447PubMedCrossRefGoogle Scholar
  10. 10.
    Arbustini E, Morbini P, Grasso M et al (1998) Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. J Am Coll Cardiol 31:645–653PubMedCrossRefGoogle Scholar
  11. 11.
    Fernando Guadalajara J, Vera-Delgado A, Gaspar-Hernandez J et al (1998) Echocardiographic aspects of restrictive cardiomyopathy: their relationship with pathophysiology. Echocardiography 15:297–314PubMedCrossRefGoogle Scholar
  12. 12.
    Keren A, Popp RL (1992) Assignment of patients into the classification of cardiomyopathies. Circulation 86:1622–1633PubMedCrossRefGoogle Scholar
  13. 13.
    Nishimura RA, Abel MD, Hatle LK et al (1989) Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part II. Clinical studies. Mayo Clin Proc 64:181–204PubMedCrossRefGoogle Scholar
  14. 14.
    Rossvoll O, Hatle LK (1993) Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: relation to left ventricular diastolic pressures. J Am Coll Cardiol 21:1687–1696PubMedCrossRefGoogle Scholar
  15. 15.
    Sasaki N, Garcia M, Lytrivi I et al (2011) Utility of Doppler tissue imaging-derived indices in identifying subclinical systolic ventricular dysfunction in children with restrictive cardiomyopathy. Pediatr Cardiol 32:646–651PubMedCrossRefGoogle Scholar
  16. 16.
    Tiruvoipati R, Naik RD, Loubani M, Billa GN (2003) Surgical approach for pericardiectomy: a comparative study between median sternotomy and left anterolateral thoracotomy. Interact Cardiovasc Thorac Surg 2(3):322–326. doi: 10.1016/S1569-9293(03)00074-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Hancock EW (2001) Differential diagnosis of restrictive cardiomyopathy and constrictive pericarditis. Heart 86:343–349PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sengupta PP, Eleid MF, Khandheria BK (2008) Constrictive pericarditis. Circ J 72:1555–1562PubMedCrossRefGoogle Scholar
  19. 19.
    Zwas DR, Gotsman I, Admon D, Keren A (2012) Advances in the differentiation of constrictive pericarditis and restrictive cardiomyopathy. Herz 37:664–674PubMedCrossRefGoogle Scholar
  20. 20.
    Oh JK, Hatle LK, Seward JB et al (1994) Diagnostic role of Doppler echocardiography in constrictive pericarditis. J Am Coll Cardiol 23:154–162PubMedCrossRefGoogle Scholar
  21. 21.
    Klein AL, Cohen GI, Pietrolungo JF et al (1993) Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary venous flow. J Am Coll Cardiol 22:1935–1943PubMedCrossRefGoogle Scholar
  22. 22.
    Oh JK, Tajik AJ, Appleton CP et al (1997) Preload reduction to unmask the characteristic Doppler features of constrictive pericarditis. A new observation. Circulation 95:796–799PubMedCrossRefGoogle Scholar
  23. 23.
    Rajagopalan N, Garcia MJ, Rodriguez L et al (2001) Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am J Cardiol 87:86–94PubMedCrossRefGoogle Scholar
  24. 24.
    Candell-Riera J, Garcia del Castillo H, Permanyer-Miralda G et al (1978) Echocardiographic features of the interventricular septum in chronic constrictive pericarditis. Circulation 57:1154–1158PubMedCrossRefGoogle Scholar
  25. 25.
    Ling LH, Oh JK, Tei C et al (1997) Pericardial thickness measured with transesophageal echocardiography: feasibility and potential clinical usefulness. J Am Coll Cardiol 29:1317–1323PubMedCrossRefGoogle Scholar
  26. 26.
    Choi JH, Choi JO, Ryu DR et al (2011) Mitral and tricuspid annular velocities in constrictive pericarditis and restrictive cardiomyopathy: correlation with pericardial thickness on computed tomography. JACC Cardiovasc Imaging 4:567–575PubMedCrossRefGoogle Scholar
  27. 27.
    Sengupta PP, Mohan JC, Mehta V et al (2004) Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol 93:886–890PubMedCrossRefGoogle Scholar
  28. 28.
    Ha JW, Oh JK, Ling LH et al (2001) Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation 104:976–978PubMedCrossRefGoogle Scholar
  29. 29.
    Reuss CS, Wilansky SM, Lester SJ et al (2009) Using mitral ‘annulus reversus’ to diagnose constrictive pericarditis. Eur J Echocardiogr 10:372–375PubMedCrossRefGoogle Scholar
  30. 30.
    Klein AL, Dahiya A (2011) Annular velocities in constrictive pericarditis: annulus and beyond. JACC Cardiovasc Imaging 4:576–579PubMedCrossRefGoogle Scholar
  31. 31.
    Kusunose K, Dahiya A, Popovic ZB et al (2013) Biventricular mechanics in constrictive pericarditis comparison with restrictive cardiomyopathy and impact of pericardiectomy. Circ Cardiovasc Imaging 6:399–406PubMedCrossRefGoogle Scholar
  32. 32.
    Sengupta PP, Krishnamoorthy VK, Abhayaratna WP et al (2008) Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging 1:29–38PubMedCrossRefGoogle Scholar
  33. 33.
    Misselt AJ, Harris SR, Glockner J et al (2008) MR imaging of the pericardium. Magn Reson Imaging Clin N Am 16:185–199, viiPubMedCrossRefGoogle Scholar
  34. 34.
    Smith WH, Beacock DJ, Goddard AJ et al (2001) Magnetic resonance evaluation of the pericardium. Br J Radiol 74:384–392PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor AM, Dymarkowski S, Verbeken EK et al (2006) Detection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results. Eur Radiol 16:569–574PubMedCrossRefGoogle Scholar
  36. 36.
    Zurick AO, Bolen MA, Kwon DH et al (2011) Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc Imaging 4:1180–1191PubMedCrossRefGoogle Scholar
  37. 37.
    Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341:373–374PubMedCrossRefGoogle Scholar
  38. 38.
    Francone M, Dymarkowski S, Kalantzi M et al (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16:944–951PubMedCrossRefGoogle Scholar
  39. 39.
    Giorgi B, Mollet NR, Dymarkowski S et al (2003) Clinically suspected constrictive pericarditis: MR imaging assessment of ventricular septal motion and configuration in patients and healthy subjects. Radiology 228:417–424PubMedCrossRefGoogle Scholar
  40. 40.
    Rajiah P, Kanne JP (2010) Computed tomography of the pericardium and pericardial disease. J Cardiovasc Comput Tomogr 4:3–18PubMedCrossRefGoogle Scholar
  41. 41.
    Leone O, Veinot JP, Angelini A et al (2012) 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 21:245–274PubMedCrossRefGoogle Scholar
  42. 42.
    Yamada H, Tabata T, Jaffer SJ, Drinko JK, Jasper SE, Lauer MS, Thomas JD, Klein AL (2007) Clinical features of mixed physiology of constriction and restriction: echocardiographic characteristics and clinical outcome. Eur J Echocardiogr 8(3):185–194PubMedCrossRefGoogle Scholar
  43. 43.
    Roufosse FE, Goldman M, Cogan E (2007) Hypereosinophilic syndromes. Orphanet J Rare Dis 2:37PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ogbogu PU, Rosing DR, Horne MK 3rd (2007) Cardiovascular manifestations of hypereosinophilic syndromes. Immunol Allergy Clin North Am 27:457–475PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mocumbi AO, Falase AO (2013) Recent advances in the epidemiology, diagnosis and treatment of endomyocardial fibrosis in Africa. Heart 99:1481–1487PubMedCrossRefGoogle Scholar
  46. 46.
    Davies J, Gibson DG, Foale R et al (1982) Echocardiographic features of eosinophilic endomyocardial disease. Br Heart J 48:434–440PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Acquatella H, Schiller NB, Puigbo JJ, Gomez-Mancebo JR, Suarez C, Acquatella G (1983) Value of two-dimensional echocardiography in endomyocardial disease with and without eosinophilia. A clinical and pathologic study. Circulation 67:1219–1226PubMedCrossRefGoogle Scholar
  48. 48.
    Ommen SR, Seward JB, Tajik AJ (2000) Clinical and echocardiographic features of hypereosinophilic syndromes. Am J Cardiol 86:110–113PubMedCrossRefGoogle Scholar
  49. 49.
    Hassan WM, Fawzy ME, Al Helaly S, Hegazy H, Malik S (2005) Pitfalls in diagnosis and clinical, echocardiographic, and hemodynamic findings in endomyocardial fibrosis: a 25-year experience. Chest 128:3985–3992PubMedCrossRefGoogle Scholar
  50. 50.
    D’Errico A, Galderisi M, Pollio G et al (2003) A case of hypereosinophilic cardiomyopathy: additional value of the myocardial contrast agent SonoVue for the differential diagnosis of a cardiac mass. Ital Heart J 4:571–574PubMedGoogle Scholar
  51. 51.
    Chew CY, Ziady GM, Raphael MJ et al (1977) Primary restrictive cardiomyopathy. Non-tropical endomyocardial fibrosis and hypereosinophilic heart disease. Br Heart J 39:399–413PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Del Bene MR, Cappelli F, Rega L et al (2012) Characterization of Loeffler eosinophilic myocarditis by means of real time three-dimensional contrast-enhanced echocardiography. Echocardiography 29:E62–E66PubMedCrossRefGoogle Scholar
  53. 53.
    Kharwar RB, Sethi R, Narain VS (2013) Right-sided endomyocardial fibrosis with a right atrial thrombus: three-dimensional transthoracic echocardiographic evaluation. Echocardiography 30(10):E322–5PubMedCrossRefGoogle Scholar
  54. 54.
    Salemi VM, Rochitte CE, Shiozaki AA et al (2011) Late gadolinium enhancement magnetic resonance imaging in the diagnosis and prognosis of endomyocardial fibrosis patients. Circ Cardiovasc Imaging 4:304–311PubMedCrossRefGoogle Scholar
  55. 55.
    Gonçalves LF, Souto FM, Faro FN et al (2012) Biventricular thrombus and endomyocardial fibrosis in antiphospholipid syndrome. Arq Bras Cardiol 99:162–165CrossRefGoogle Scholar
  56. 56.
    Mousseaux E, Hernigou A, Azencot M et al (1996) Endomyocardial fibrosis: electron-beam CT features. Radiology 198:755–760PubMedCrossRefGoogle Scholar
  57. 57.
    Ibrahim T, Blanke F, Huss-Marp J et al (2011) Gadolinium-enhanced cardiovascular magnetic resonance for the detection and characterization of Loeffler endocarditis in patients with hypereosinophilic syndrome. Int J Cardiol 153:105–108PubMedCrossRefGoogle Scholar
  58. 58.
    Tani H, Amano Y, Tachi M et al (2012) T2-weighted and delayed enhancement MRI of eosinophilic myocarditis: relationship with clinical phases and global cardiac function. Jpn J Radiol 30:824–831PubMedCrossRefGoogle Scholar
  59. 59.
    Barretto AC, Mady C, Nussbacher A, Ianni BM, Oliveira SA, Jatene A, Ramires JA (1998) Atrial fibrillation in endomyocardial fibrosis is a marker of worse prognosis. Int J Cardiol 67(1):19–25PubMedCrossRefGoogle Scholar
  60. 60.
    Gonzalez-Lavin L, Friedman JP, Hecker SP, McFadden PM (1983) Endomyocardial fibrosis: diagnosis and treatment. Am Heart J 105(4):699–705PubMedCrossRefGoogle Scholar
  61. 61.
    Ngian GS, Sahhar J, Wicks IP et al (2011) Cardiovascular disease in systemic sclerosis–an emerging association? Arthritis Res Ther 13:237PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ferri C, Giuggioli D, Sebastiani M et al (2005) Heart involvement and systemic sclerosis. Lupus 14:702–707PubMedCrossRefGoogle Scholar
  63. 63.
    Eggebrecht RF, Kleiger RE (1977) Echocardiographic patterns in scleroderma. Chest 71:47–51PubMedCrossRefGoogle Scholar
  64. 64.
    Cusma Piccione M, Zito C, Bagnato G et al (2013) Role of 2D strain in the early identification of left ventricular dysfunction and in the risk stratification of systemic sclerosis patients. Cardiovasc Ultrasound 11:6PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schattke S, Knebel F, Grohmann A et al (2010) Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler Tissue and Speckle Tracking echocardiography study. Cardiovasc Ultrasound 8:3PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bezante GP, Rollando D, Sessarego M et al (2007) Cardiac magnetic resonance imaging detects subclinical right ventricular impairment in systemic sclerosis. J Rheumatol 34:2431–2437PubMedGoogle Scholar
  67. 67.
    Kobayashi H, Yokoe I, Hirano M et al (2009) Cardiac magnetic resonance imaging with pharmacological stress perfusion and delayed enhancement in asymptomatic patients with systemic sclerosis. J Rheumatol 36:106–112PubMedGoogle Scholar
  68. 68.
    Vogel-Claussen J, Skrok J, Shehata ML et al (2011) Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology 258:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tzelepis GE, Kelekis NL, Plastiras SC et al (2007) Pattern and distribution of myocardial fibrosis in systemic sclerosis: a delayed enhanced magnetic resonance imaging study. Arthritis Rheum 56:3827–3836PubMedCrossRefGoogle Scholar
  70. 70.
    Nassenstein K, Breuckmann F, Huger M et al (2008) Detection of myocardial fibrosis in systemic sclerosis by contrast-enhanced magnetic resonance imaging. Rofo 180:1054–1060PubMedCrossRefGoogle Scholar
  71. 71.
    Hachulla AL, Launay D, Gaxotte V et al (2009) Cardiac magnetic resonance imaging in systemic sclerosis: a cross-sectional observational study of 52 patients. Ann Rheum Dis 68:1878–1884PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Follansbee WP, Curtiss EI, Medsger TA Jr et al (1984) Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma. N Engl J Med 310:142–148PubMedCrossRefGoogle Scholar
  73. 73.
    Meune C, Allanore Y, Devaux JY et al (2004) High prevalence of right ventricular systolic dysfunction in early systemic sclerosis. J Rheumatol 31:1941–1945PubMedGoogle Scholar
  74. 74.
    Mok MY, Lau CS, Chiu SS et al (2011) Systemic sclerosis is an independent risk factor for increased coronary artery calcium deposition. Arthritis Rheum 63:1387–1395PubMedCrossRefGoogle Scholar
  75. 75.
    Ioannidis JP, Vlachoyiannopoulos PG, Haidich AB, Medsger TA Jr, Lucas M, Michet CJ, Kuwana M, Yasuoka H, van den Hoogen F, Te Boome L, van Laar JM, Verbeet NL, Matucci-Cerinic M, Georgountzos A, Moutsopoulos HM (2005) Mortality in systemic sclerosis: an international meta-analysis of individual patient data. Am J Med 118(1):2–10. doi: 10.1016/j.amjmed.2004.04.031 PubMedCrossRefGoogle Scholar
  76. 76.
    Clements PJ, Lachenbruch PA, Furst DE, Paulus HE, Sterz MG (1991) Cardiac score. A semiquantitative measure of cardiac involvement that improves prediction of prognosis in systemic sclerosis. Arthritis Rheum 34(11):1371–1380PubMedCrossRefGoogle Scholar
  77. 77.
    Kahan A, Allanore Y (2006) Primary myocardial involvement in systemic sclerosis. Rheumatology (Oxford) 45 Suppl 4:iv14–17. doi: 10.1093/rheumatology/kel312 Google Scholar
  78. 78.
    Allanore Y, Meune C (2010) Primary myocardial involvement in systemic sclerosis: evidence for a microvascular origin. Clin Exp Rheumatol 28(5 Suppl 62):S48–S53PubMedGoogle Scholar
  79. 79.
    Montisci R, Vacca A, Garau P, Colonna P, Ruscazio M, Passiu G, Iliceto S, Mathieu A (2003) Detection of early impairment of coronary flow reserve in patients with systemic sclerosis. Ann Rheum Dis 62(9):890–893PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sulli A, Ghio M, Bezante GP, Deferrari L, Craviotto C, Sebastiani V, Setti M, Barsotti A, Cutolo M, Indiveri F (2004) Blunted coronary flow reserve in systemic sclerosis. Rheumatology (Oxford) 43(4):505–509. doi: 10.1093/rheumatology/keh087 CrossRefGoogle Scholar
  81. 81.
    Vignaux O, Allanore Y, Meune C, Pascal O, Duboc D, Weber S, Legmann P, Kahan A (2005) Evaluation of the effect of nifedipine upon myocardial perfusion and contractility using cardiac magnetic resonance imaging and tissue Doppler echocardiography in systemic sclerosis. Ann Rheum Dis 64(9):1268–1273. doi: 10.1136/ard.2004.031484 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Duboc D, Kahan A, Maziere B, Loc’h C, Crouzel C, Menkes CJ, Amor B, Strauch G, Guerin F, Syrota A (1991) The effect of nifedipine on myocardial perfusion and metabolism in systemic sclerosis. A positron emission tomographic study. Arthritis Rheum 34(2):198–203PubMedCrossRefGoogle Scholar
  83. 83.
    Kahan A, Devaux JY, Amor B, Menkes CJ, Weber S, Nitenberg A, Venot A, Guerin F, Degeorges M, Roucayrol JC (1986) Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis. N Engl J Med 314(22):1397–1402. doi: 10.1056/NEJM198605293142201 PubMedCrossRefGoogle Scholar
  84. 84.
    Lancellotti P, Nkomo VT, Badano LP et al (2013) Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 14:721–740PubMedCrossRefGoogle Scholar
  85. 85.
    Darby SC, Cutter DJ, Boerma M et al (2010) Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76:656–665PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jurcut R, Ector J, Erven K et al (2007) Radiotherapy effects on systolic myocardial function detected by strain rate imaging in a left-breast cancer patient. Eur Heart J 28:2966PubMedCrossRefGoogle Scholar
  87. 87.
    Gyenes G, Fornander T, Carlens P et al (1996) Myocardial damage in breast cancer patients treated with adjuvant radiotherapy: a prospective study. Int J Radiat Oncol Biol Phys 36:899–905PubMedCrossRefGoogle Scholar
  88. 88.
    Seddon B, Cook A, Gothard L et al (2002) Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiother Oncol 64:53–63PubMedCrossRefGoogle Scholar
  89. 89.
    Prosnitz RG, Hubbs JL, Evans ES et al (2007) Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer 110:1840–1850PubMedCrossRefGoogle Scholar
  90. 90.
    Veinot JP, Edwards WD (1996) Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol 27(8):766–773PubMedCrossRefGoogle Scholar
  91. 91.
    Heidenreich PA, Hancock SL, Vagelos RH, Lee BK, Schnittger I (2005) Diastolic dysfunction after mediastinal irradiation. Am Heart J 150(5):977–982. doi: 10.1016/j.ahj.2004.12.026 PubMedCrossRefGoogle Scholar
  92. 92.
    OHI D, Garot J (2011) Radiation-induced heart disease. Circ Heart Fail 4(1):e1–2. doi: 10.1161/CIRCHEARTFAILURE.110.958454 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marco Merlo
    • 1
    Email author
  • Elena Abate
    • 1
  • Bruno Pinamonti
    • 1
  • Giancarlo Vitrella
    • 1
  • Enrico Fabris
    • 1
  • Francesco Negri
    • 1
  • Francesca Brun
    • 1
  • Manuel Belgrano
    • 2
  • Rossana Bussani
    • 3
  • Gianfranco Sinagra
    • 1
  1. 1.Department of CardiologyUniversity Hospital of TriesteTriesteItaly
  2. 2.Radiology UnitUniversity Hospital of TriesteTriesteItaly
  3. 3.Department of Pathology and Morbid AnatomyUniversity Hospital of TriesteTriesteItaly

Personalised recommendations