Advertisement

STRATI 2013 pp 37-41 | Cite as

Cretaceous–Palaeogene Boundary Events in Texas: New Sections, Revised Micropalaeontological Interpretations, and Clarification of the Stratigraphy

  • Malcolm HartEmail author
  • Andrew Leighton
  • Tom Yancey
  • Matthew Hampton
  • Chengjie Liu
  • Brent Miller
  • Christopher Smart
  • Richard Twitchett
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Recent fieldwork (2009–2012) in the Brazos River area, Falls County, Texas, has resulted in the discovery of a number of new exposures that have allowed a reinterpretation of the Cretaceous–Palaeogene boundary events. Our data indicate that there was a single impact event with the seismic shock and resulting tsunami eroding the uppermost Maastrichtian surface, prior to the deposition of a number of storm-generated sandstones, the lower of which contains altered spherules, shell fragments, ichthyolith debris, and reworked microfossils. The overlying lower Palaeocene succession of mudstones and siltstones was deposited in a midshelf setting that is quite similar to that of the preceding uppermost Maastrichtian. The lower Palaeocene appears to record a Milankovitch cyclicity and, potentially, the Dan-C2 hyperthermal event.

Keywords

Texas Chicxulub impact Tsunami Palaeocene Foraminifera 

References

  1. Adatte, T., Keller, G., & Baum, G. R. (2011). Age and origin of the Chicxulub impact and sandstone complex, Brazos River, Texas: Evidence from lithostratigraphy and sedimentology. In G. Keller, & T. Adatte (Eds.), The end-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Society for Sedimentary Geology special publication 100, 43–80.Google Scholar
  2. Alegret, L., Thomas, E., & Lohmann, K. C. (2012). End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences, 109(3), 728–732.CrossRefGoogle Scholar
  3. Chenet, A.-L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S. F. R., et al. (2009). Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 m-thick composite section. Journal of Geophysical Research,114, B06103. doi: 10.1029/2008JB005644.CrossRefGoogle Scholar
  4. Dias, B. B., Hart, M. B., Smart, C. W., & Hall-Spencer, J. M. (2010). Modern seawater acidification: the response of foraminifera to high CO2 conditions in the Mediterranean Sea. Journal of the Geological Society, London,167, 843–846.CrossRefGoogle Scholar
  5. Donovan, A. D., Baum, G R., Blechschmidt, G. L., Loutit, T. S, Pflum, C. E., & Vail, P. R (1988). Sequence stratigraphic setting of the Cretaceous–Tertiary boundary in Central Alabama. In C. K. Wilgus, H. Posamentier, C. A. Ross, & C. G. St. C. Kendall (Eds), Sea-level changes: An integrated approach. SEPM Society for Sedimentary Geology special publication 42, 299–307.Google Scholar
  6. Fassett, J. E. (2000). Geology and Coal Resources of the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado. In M. A. Kirschbaum, L. N. R. Roberts, & L. R. H. Biewick (Eds.), Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah. (pp. 1–132). Denver: U.S. Geological Survey Professional Paper 1625-B, USGS.Google Scholar
  7. Hart, M. B. (2007). Late Cretaceous climates and foraminiferid distributions. In M. Williams, A. M. Haywood, F. J. Gregory, & D. N. Schmidt (Eds.), Deep-Time Perspectives on Climate Change, (pp. 235–250). London: The Micropalaeontological Society Special Publications, Geological Society.Google Scholar
  8. Hart, M. B., Yancey, T. E., Leighton, A. D., Miller, B., Liu, C., Smart, C. W., et al. (2012). The Cretaceous-Paleogene boundary on Brazos River, Texas: New stratigraphic sections and revised interpretations. Journal of the Gulf Coast Association of Geological Societies,1, 69–80.Google Scholar
  9. Keller, G., Adatte, T (2011). End-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Society for Sedimentary Geology special publication 100, 313 p.Google Scholar
  10. Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., et al. (2007). Chicxulub impact predates K-T boundary: New evidence from Brazos, Texas. Earth and Planetary Science Letters,255, 339–356.CrossRefGoogle Scholar
  11. Keller, G., Adatte, T., Baum, G. R., & Berner, Z (2008). Reply to comment by Schulte et al. on “Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas”. Earth and Planetary Science Letters,269, 620–628.CrossRefGoogle Scholar
  12. Keller, G., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C., et al. (2011). Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India,78, 399–428.CrossRefGoogle Scholar
  13. Kuipe, K. F, Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, J. R (2008). Synchronizing rock clocks of Earth history. Science,320, 500–504 and supporting on-line material. doi  10.1126/science.1154339.CrossRefGoogle Scholar
  14. MacLeod, K. G., Whitney, D. L., Huber, B. T., & Koeberl, C. (2007). Impact and extinction in remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geological Society of America Bulletin,119, 101–115.CrossRefGoogle Scholar
  15. Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol, J., et al. (2006). The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, (Cenozoic) at El Kef, Tunisia—original definition and revision. Episodes,29, 263–278.CrossRefGoogle Scholar
  16. Moy, A. D., Howard, W. R., Bray, S. G., & Trull, T. W. (2009). Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience,. doi: 10.1038/NGEO460.CrossRefGoogle Scholar
  17. Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Feely, R. A., & Gnanadesikan, A. et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.CrossRefGoogle Scholar
  18. Pettit, L. R., Hart, M. B., Medina-Sánchez, A. N., Smart, C. W, Rodolfo-Metalpa, R., & Hall-Spencer, J. M. et al. (2013). Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Marine Pollution Bulletin (in press).Google Scholar
  19. Ryer, T. A., Phillips, R. E., Bohor, B. F., & Pollastro, R. M. (1980). Use of altered volcanic ash falls in stratigraphic studies of coal-bearing sequences: An example from the Upper Cretaceous Ferron Sandstone Member of the Manos Shale in central Utah. Geological Society of America Bulletin,91, 579–586.CrossRefGoogle Scholar
  20. Sauvage, J., Goderis, S., & Claeys, P. (2010). High-resolution platinum group elements and C-isotope analyses across the KT boundary in the Denver Basin. Geological Society of America, Abstracts and Program, Annual Meeting 2010, Denver, Colorado, No. 214–5.Google Scholar
  21. Schulte, P., & 40 additional authors. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science,327, 1214–1218.CrossRefGoogle Scholar
  22. Stanley, S. M. (2006). Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Palaeontological and experimental evidence. Palaeogeography, Palaeoecology, Palaeoecology,232, 214–236.CrossRefGoogle Scholar
  23. Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology,144, 3–19.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Malcolm Hart
    • 1
    Email author
  • Andrew Leighton
    • 1
  • Tom Yancey
    • 2
  • Matthew Hampton
    • 3
  • Chengjie Liu
    • 4
  • Brent Miller
    • 2
  • Christopher Smart
    • 1
  • Richard Twitchett
    • 1
  1. 1.School of Geography, Earth and Environmental SciencesPlymouth UniversityPlymouthUK
  2. 2.Department of Geology and GeophysicsTexas A&M UniversityCollege StationUSA
  3. 3.Network Stratigraphic Consulting LtdHertfordshireUK
  4. 4.ExxonMobil Exploration CompanyHoustonUSA

Personalised recommendations