Advertisement

STRATI 2013 pp 239-242 | Cite as

The Montalbano Jonico Section (Southern Italy): A Candidate for the GSSP of the Ionian Stage (Lower–Middle Pleistocene Boundary)

  • N. Ciaranfi
  • G. Aiello
  • D. Barra
  • A. Bertini
  • A. Girone
  • P. Maiorano
  • M. Marino
  • P. Petrosino
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The Lower–Middle Pleistocene Subseries boundary and the Ionian Stage still lack formal ratification. The use of the name “Ionian” as a stage of the Middle Pleistocene follows Cita et al. (2006, 2008) and Gibbard et al. (2009). The GSSP of the Ionian Stage should be defined at a point close to the Matuyama–Brunhes (M–B) reversal, in a marine section exposed on land. However, magnetic reversal is considered as only one of multiple criteria that may be used for the definition of a GSSP (Head et al. 2008). The Montalbano Jonico section (Southern Italy) is a continuous marly–clayey marine succession, well exposed and astronomically calibrated, which extends from 1.24 to 0.645 Ma (Ciaranfi et al. 2009). It spans the interval from Marine Isotope Stage (MIS) 37 to 17/16 and covers, together with the Vrica section, the sedimentary record of the entire Calabrian Stage. The section encompasses MIS 19, whose base corresponds closely to the M–B boundary (Lisiecki and Raymo 2005); unfortunately, the M–B palaeomagnetic reversal was not identified in the Montalbano sediments (Sagnotti et al. 2010). The isotopic signals are considered acceptable for the definition of a boundary stratotype (Remane et al. 1996) and the practice has been recently adopted for the definition of the GSSP of the Serravallian Stage (Hilgen et al. 2010). The interval including MIS 19 is chronologically well constrained and is a maximum flooding surface, as shown by the occurrence of the Neopycnodonte palaeocommunity, and the mesopelagic tropical–subtropical Atlantic teleostean Bonapartia pedaliota marks the base of the interglacial. Evidence of glacio-eustatic sea level rise, correlated with MIS 19 and the M–B boundary, are well known in several geographical areas, supporting the wide traceability of this oxygen isotope shift. The onset of MIS 19 in the Montalbano Jonico section may represent an appropriate stratigraphic horizon for the definition of the GSSP of the Ionian Stage, also fulfilling the additional criteria of Remane et al. (1996) for boundary stratotype definition, such as continuous sedimentation, a high sedimentation rate, an absence of synsedimentary disturbance, and good preservation and protection of the section.

Keywords

GSSP of Ionian stage Lower–Middle Pleistocene Montalbano Jonico section Southern Italy 

References

  1. Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J. E. T., Massari, F. & Rio, D. (2005). Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama–Brunhes Boundary in the central Mediterranean (southern Italy). In M.J. Head, P.L. Gibbard (Eds.), Early–middle pleistocene transitions: the land–ocean evidence (Vol. 247, pp. 159–182). London: Geological Society, London, Special Publications.Google Scholar
  2. Ciaranfi, N., Lirer, F., Lirer, L., Lourens, L. J., Maiorano, P., Marino, M., et al. (2009). Integrated stratigraphy and astronomical tuning of the lower–middle pleistocene montalbano jonico section (southern Italy). Quaternary International, 219, 109–120.CrossRefGoogle Scholar
  3. Cita, M. B., Capraro, L., Ciaranfi, N., Di Stefano, E., Marino, M., Rio, D., et al. (2006). Calabrian and ionian: a proposal for a definition of mediterranean stages for lower and middle pleistocene. Episodes, 29(2), 107–114.Google Scholar
  4. Cita, M. B., Capraro, L., Ciaranfi, N., Di Stefano, E., Lirer, F., Maiorano, P., et al. (2008). The calabrian stage redefined. Episodes, 31(4), 418–429.Google Scholar
  5. Florindo, F., Karner, D., Marra, F., Renne, P., Roberts, A., & Weaver, R. (2007). Radiometric age constraints for glacial terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth and Planetary Science Letters, 256, 61–80.CrossRefGoogle Scholar
  6. Gibbard, P. L., Head, M. J. & Walker, M. J. C. (2009). Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Journal Quaternary Sciences 25(2), 96–102, (The Subcommission on Quaternary Stratigraphy (2009)) .Google Scholar
  7. Head, M. J., Gibbard, P. J., & Salvador, A. (2008). The quaternary: its characters and definition. Episodes, 31(2), 234–238.Google Scholar
  8. Hilgen, F. J., Abels, H. A., Iaccarino, S., Krijgsman, W., Raffi, I., Sprovieri, R., et al. (2010). The global stratotype section and point (GSSP) of the serravallian stage (middle miocene). Episodes, 32(3), 152–166.Google Scholar
  9. Kitaba, I., Hyodo, M., Katoh, S., & Matsushita, M. (2012). Phase-lagged warming and the disruption of climatic rhythms during the matuyama-brunhes magnetic polarity transition. Gondwana Research, 21, 595–600.CrossRefGoogle Scholar
  10. Lisiecki, L. & Raymo, L. (2005). A pliocene–pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
  11. Maiorano, P., Capotondi, L., Ciaranfi, N., Girone, A., Lirer, F., Marino, M., et al. (2010). Vrica. crotone and montalbano jonico sections: a potential unit-stratotype for the calabrian stage. Episodes, 33(4), 218–233.Google Scholar
  12. Massari, F., Capraro, L., & Rio, D. (2007). Climatic modulation of timing of system-tract development with respect to sea-level changes (middle pleistocene of crotone, Calabria, southern Italy). Journal Sedimentary Research, 77, 461–468.CrossRefGoogle Scholar
  13. Naish, T. R., Field, B. D., Zhul, H., Melhuish, A., Carter, R. M., Abbott, S. T., et al. (2005). Integrated outcrop, drill core, borehole and seismic stratigraphic architecture of a cyclothemic, shallow-marine depositional system, wanganui basin, New Zealand. Journal of the Royal Society of New Zealand, 35(1–2), 91–122.CrossRefGoogle Scholar
  14. Pillans, B., Chappell, J., & Naish, T. R. (1998). A review of the milankovitch climatic beat: template for plio-pleistocene sea-level changes and sequence stratigraphy. Sedimentary Geology, 122, 5–21.CrossRefGoogle Scholar
  15. Remane, J., Bassett, M. G., Cowie, J. W., Gohrbrandt, K. H., Lane, H. R., Michelsen, O., et al. (1996). Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes, 19(3), 77–81.Google Scholar
  16. Sagnotti, L., Cascella, A., Ciaranfi, N., Macrì, P., Maiorano, P., Marino, M., et al. (2010). Rock magnetisme and paleomagnetisme of the montalbano jonico section (Italy): Evidence for late diagenetic growth of greigite and implications for magnetostratigraphy. Geophysical Journal International, 180, 1049–1066.CrossRefGoogle Scholar
  17. Snedden, J. W. Liu. C. (2010). A Compilation of Phanerozoic Sea-Level Change, Coastal Onlaps and Recommended Sequence Designations. AAPG, p. 3, www.searchanddiscovery.com.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. Ciaranfi
    • 1
  • G. Aiello
    • 2
  • D. Barra
    • 2
  • A. Bertini
    • 3
  • A. Girone
    • 1
  • P. Maiorano
    • 1
  • M. Marino
    • 1
  • P. Petrosino
    • 2
  1. 1.Dipartimento di Scienze della Terra e GeoambientaliUniversità di Bari Aldo MoroBariItaly
  2. 2.Dipartimento di Scienze delle Terra, dell’Ambiente e delle RisorseUniversità di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly

Personalised recommendations