Advertisement

STRATI 2013 pp 137-141 | Cite as

A New Low- to Middle-Latitude Biozonation and Revised Biochronology of Palaeogene Calcareous Nannofossils

  • Isabella RaffiEmail author
  • Claudia Agnini
  • Jan Backman
  • Eliana Fornaciari
  • Domenico Rio
  • Heiko Pälike
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

We present a new Palaeogene calcareous nannofossil biozonation that is integrated with the biostratigraphic frameworks of Martini and Bukry (Martini 1971; Bukry 1973, 1978; Okada and Bukry 1980). Age estimates are provided for all Palaeogene biohorizons. This new biostratigraphic scheme is derived from the biostratigraphic methodologies and data that we have generated over nearly three decades, studying calcareous nannofossils in Palaeogene marine sections and from deep-sea sediments, in low- and middle-latitude regions. Additional new data are also presented. The aim of our work has always been to pursue a detailed nannofossil biostratigraphy through the use of semiquantitative methods in combination with short sampling intervals. This strategy is aimed at capturing the details of the distribution and abundance behaviour of individual calcareous nannofossil taxa. A limited set of selected biohorizons has been chosen for establishing a relatively coarsely resolved biozonation that could guarantee ease of communication and applicability in practical geological work. Following the criteria used in a new Neogene biozonation recently published by Backman et al. (2012), we propose a new code system for the 36 biozones in the Palaeocene–Oligocene interval: Calcareous Nannofossil (CN) Palaeocene biozones 1–11, CNP1–CNP11; CN Eocene biozones 1–19, CNE1–CNE19; and CN Oligocene biozones 1–6, CNO1–CNO6. The average duration of the biozones is 0.9 Myr in the Palaeocene, ~1 Myr in the Eocene, and 1.9 Myr in the Oligocene. Age estimates are assigned to all biozone boundary markers and to numerous additional biohorizons. This biochronology has been derived from astronomically tuned cyclostratigraphies for the time interval from 23 to ~41 Ma (Pälike et al. 2006) and from the Geomagnetic Polarity Time Scale (GPTS) of Cande and Kent (1995) for ~41–65 Ma (to the K–Pg boundary). Emphasis is placed on the discussion about the reliability of those nannofossil biohorizons that have previously been been used or suggested for the definition/recognition of some Palaeogene stage boundaries.

Keywords

Calcareous nannofossils Biozonation Palaeogene Biochronology 

References

  1. Backman, J., Raffi, I., Rio, D., Fornaciari, E., & Pälike, H. (2012). Biozonation and biochronology of Miocene through pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy,45, 221–244. doi: 10.1127/0078-0421/2012/0022.CrossRefGoogle Scholar
  2. Bukry, D. (1973). Low-latitude coccolith biostratigraphic zonation. In N. T., Edgar, J. B., Saunders, et al., (Eds.), (pp. 685−703) Initial Reports DSDP 15, Washington: (US Govt. Printing Office). doi: 10.2973/dsdp.proc.15.116.1973.Google Scholar
  3. Bukry, D. (1978). Biostratigraphy of Cenozoic marine sediments by calcareous nannofossils. Micropaleontology,24, 44–60.CrossRefGoogle Scholar
  4. Cande, S. C., & Kent, D. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of the Geophys Research., [Solid Earth] 100 (B4), 6093–6095. doi: 10.1029/94JB03098.CrossRefGoogle Scholar
  5. Martini, E. (1971). Standard tertiary and quaternary calcareous nannoplankton zonation. In A. Farinacci, (Ed.), Proceedings 2nd International Conference Planktonic Microfossils Roma, (vol. 2, pp. 739−785), Rome (Ed. Tecnosci.).Google Scholar
  6. Okada, H., & Bukry, D. (1980). Supplementary modification and introduction of code numbers to the low–latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology,5, 321–325.CrossRefGoogle Scholar
  7. Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., et al. (2006). The heartbeat of the Oligocene climate system. Science,314(5807), 1894–1898. doi: 10.1126/science.1133822.CrossRefGoogle Scholar
  8. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., et al. (2006). A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Review,25, 3113–3137.CrossRefGoogle Scholar
  9. Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S. I. I., et al. (2013). Time scales of critical events around the cretaceous-paleogene boundary. Science,339(6120), 684–687.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Isabella Raffi
    • 1
    Email author
  • Claudia Agnini
    • 2
  • Jan Backman
    • 3
  • Eliana Fornaciari
    • 2
  • Domenico Rio
    • 2
  • Heiko Pälike
    • 4
  1. 1.Dipartimento di Ingegneria e Geologia (InGeo)—CeRSGeoUniversità degli Studi “G. d’Annunzio” Chieti-PescaraChieti-PescaraItaly
  2. 2.Dipartimento di GeoscienzeUniversità Degli Studi di PadovaPaduaItaly
  3. 3.Department of Geological SciencesStockholm UniversityStockholmSweden
  4. 4.Center for Marine Environmental Sciences (MARUM)Bremen UniversityBremenGermany

Personalised recommendations