Advertisement

STRATI 2013 pp 847-851 | Cite as

Integrated Magnetic Susceptibility and Geochemical Record of δ13C Anomalies in the Berriasian and Valanginian Sections from the Tethyan Domain (Western Carpathians, Poland)

  • Jacek GrabowskiEmail author
  • Leszek Krzemiński
  • Johann Schnyder
  • Katarzyna Sobień
  • Jan Hejnar
  • Leona Koptiková
  • Andrzej Pszczółkowski
  • Petr Schnabl
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

New magnetic susceptibility (MS), stable isotope, and geochemical (major and trace elements) data are presented from the three Berriasian–Valanginian pelagic sections from the Western Carpathians of Poland. MS correlates well with lithogenic influx and reflects exactly the short-term transgressive–regressive cycles in the interval below the δ13C event (the Weissert event) recorded in the upper Valanginian. The pattern of changes in MS recorded for the Weissert event is more complicated, most probably also reflecting significant climatic changes. Redox-sensitive indicators (Th/U, Ce/Ce*) account for significantly oxygen-depleted conditions combined with relatively low content of productivity indicators (Al-normalized P, Ba, and Cu).

Keywords

Berriasian Valanginian Magnetic susceptibility δ13Major and trace elements 

Notes

Acknowledgments

This work was conducted within the framework of the Polish–French bilateral cooperation 7841/R09/R10 (“Polonium”) and was funded by the Polish Ministry of Science and Education (project No. 683/N-POLONIUM/2010/0). Thanks are given to an anonymous reviewer and journal editors for helpful remarks.

References

  1. Duchamp-Alphonse, S., Gardin, S., Fiet, N., Bartolini, A., Blamart, D., & Pagel, M. (2007). Fertilization of the northwestern Tethys (Vocontian Basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data. Palaeogeography, Palaeoclimatology, Palaeoecology,243, 132–151.CrossRefGoogle Scholar
  2. Duchamp-Alphonse, S., Fiet, N., Adatte, T., & Pagel, M. (2011). Climate and sea-level variations along the northwestern Tethyan margin during the Valanginian C-isotope excursion: Mineralogical evidence from the Vocontian basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology,302, 243–254.CrossRefGoogle Scholar
  3. Föllmi, K. B. (2012). Early cretaceous life, climate and anoxia. Cretaceous Research,35, 230–257.CrossRefGoogle Scholar
  4. Grabowski, J., & Pszczółkowski, A. (2006). Magneto- and biostratigraphy of the Tithonian-Berriasian pelagic sediments in the Tatra Mountains (central Western Carpathians, Poland): Sedimentary and rock magnetic changes at the Jurassic/Cretaceous boundary. Cretaceous Research,27, 398–417.CrossRefGoogle Scholar
  5. Grabowski, J., Schnyder, J., Sobień, K., Koptikova, L., Krzemiński, L., Pszczółkowski, A., et al. (2013). Magnetic susceptibility and spectral gamma logs in the Tithonian–Berriasian pelagic sediments in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretaceous Research. http://dx.doi.org/10.1016/j.cretres.2013.02.008.
  6. Greselle, B., Pittet, B., Mattioli, E., Joachimski, M., Barbarin, N., Riquier, L., et al. (2011). The Valanginian isotope event: A complex suite of palaeoenvironmental perturbations. Palaeogeography, Palaeoclimatology, Palaeoecology,306, 41–57.CrossRefGoogle Scholar
  7. Gröcke, D. R., Price, G. D., Robinson, S. A., Baraboshkin, E. Y., Mutterlose, J., & Ruffell, A. H. (2005). The upper valanginian (early cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters,240, 495–509.CrossRefGoogle Scholar
  8. Kuhn, O., Weissert, H., Follmi, K. B., & Hennig, S. (2005). Altered carbon cycling and trace-metal enrichment during the late Valanginian and early Hauterivian. Eclogae Geologicae Helvetiae,98, 333–344.CrossRefGoogle Scholar
  9. Pszczółkowski, A., & Myczyński, R. (2004). Ammonite-supported microfossil and nannoconid stratigraphy of the Tithonian–Hauterivian limestones in selected sections of the Branisko succession, Pieniny Klippen Belt (Poland). Studia Geologica Polonica,123, 133–197.Google Scholar
  10. Rehakova, D. (2000). Evolution and distribution of the late Jurassic and early Cretaceous calcareous dinoflagellates recorded in the western Carpathian pelagic carbonate facies. Mineralia Slovaca,32, 79–88.Google Scholar
  11. Westermann, S., Föllmi, K. B., Adatte, T., Matera, V., Schnyder, J., Fleitmann, D., et al. (2010). The Valanginian δ13C excursion may not be an expression of a global oceanic anoxic event. Earth and Planetary Science Letters,290, 118–131.CrossRefGoogle Scholar
  12. Tribovillard, N., Algeo, Y. J., Lyons, T., & Riboullleau, A. (2006). Trace metals as paleoredox and productivity proxies: An update. Chemical Geology,232, 12–32.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jacek Grabowski
    • 1
    Email author
  • Leszek Krzemiński
    • 1
  • Johann Schnyder
    • 2
  • Katarzyna Sobień
    • 1
  • Jan Hejnar
    • 3
  • Leona Koptiková
    • 4
  • Andrzej Pszczółkowski
    • 5
  • Petr Schnabl
    • 4
  1. 1.Polish Geological Institute—National Research InstituteWarszawaPoland
  2. 2.University Paris VIParis Cedex 05France
  3. 3.Institute of Geological Sciences, Cracow Research CentrePolish Academy of SciencesKrakowPoland
  4. 4.Institute of Geology of the Academy of Sciences of the Czech RepublicPraha 6Czech Republic
  5. 5.Institute of Geological SciencesPolish Academy of Sciences, Warsaw Research CentreWarszawaPoland

Personalised recommendations