Understanding Eye Tracking Data for Re-engineering Web Pages

  • Sukru Eraslan
  • Yeliz Yes̨ilada
  • Simon Harper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8295)


Existing re-engineering, namely transcoding, techniques improved disabled and mobile Web users experience by making Web pages more accessible in constrained environments such as on small screen devices and in audio presentation. However, none of these techniques use eye tracking data to transcode Web pages based on understanding and predicting users experience. The overarching goal is to improve the user experience in such constrained environments by using a novel application of eye tracking technology. Thus, this PhD research project aims to propose an algorithm to identify common scanpaths, which are eye movement sequences, and relating those scanpaths to elements of Web pages. It can then be used to transcode Web pages, for instance, unnecessary information can be removed. It is obvious that both visually disabled and mobile users would benefit from such development.


eye tracking scanpaths commonality transcoding re-engineering 


  1. 1.
    Harper, S., Yesilada, Y.: Web accessibility and guidelines. In: Web Accessibility: A Foundation for Research, 1st edn. Human-Computer Interaction Series, ch. 6, pp. 61–78. Springer, London (2008)Google Scholar
  2. 2.
    Yesilada, Y., Stevens, R., Harper, S., Goble, C.: Evaluating dante: Semantic transcoding for visually disabled users. ACM Trans. Comput.-Hum. Interact. 14(3), 14 (2007)CrossRefGoogle Scholar
  3. 3.
    Asakawa, C., Takagi, H.: Transcoding. In: Harper, S., Yesilada, Y. (eds.) Web Accessibility: A Foundation for Research. Human-Computer Interaction Series, pp. 231–260. Springer (2008)Google Scholar
  4. 4.
    Rayner, K.: Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 124, 372–422 (1998)CrossRefGoogle Scholar
  5. 5.
    Josephson, S., Holmes, M.E.: Visual attention to repeated internet images: testing the scanpath theory on the world wide web. In: ETRA 2002, pp. 43–49. ACM, NY (2002)Google Scholar
  6. 6.
    Mast, M., Burmeister, M.: Exposing repetitive scanning in eye movement sequences with t-pattern detection. In: IADIS IHCI 2011, Rome, Italy, pp. 137–145 (2011)Google Scholar
  7. 7.
    Poole, A., Ball, L.J.: Eye tracking in human-computer interaction and usability research: Current status and future. In: Ghaoui, C. (ed.) Prospects. Encyclopedia of Human-Computer Interaction. Idea Group, Inc., Pennsylvania (2005)Google Scholar
  8. 8.
    Takeuchi, H., Habuchi, Y.: A quantitative method for analyzing scan path data obtained by eye tracker. In: CIDM 2007, March 1-April 5, pp. 283–286 (2007)Google Scholar
  9. 9.
    Akpinar, E., Yesilada, Y.: Vision based page segmentation: Extended and improved algorithm. Technical report, Middle East Technical University Northern Cyprus Campus (2012)Google Scholar
  10. 10.
    Santella, A., DeCarlo, D.: Robust clustering of eye movement recordings for quantification of visual interest. In: ETRA 2004, pp. 27–34. ACM, New York (2004)CrossRefGoogle Scholar
  11. 11.
    West, J.M., Haake, A.R., Rozanski, E.P., Karn, K.S.: Eyepatterns: software for identifying patterns and similarities across fixation sequences. In: ETRA 2006, pp. 149–154. ACM, NY (2006)Google Scholar
  12. 12.
    Day, R.F.: Examining the validity of the needleman&wunsch algorithm in identifying decision strategy with eye-movement data. Decision Support Systems 49(4), 396–403 (2010)CrossRefGoogle Scholar
  13. 13.
    Cristino, F., Mathot, S., Theeuwes, J., Gilchrist, I.D.: Scanmatch: a novel method for comparing fixation sequences. Behav. Res. Methods 42(3), 692–700 (2010)CrossRefGoogle Scholar
  14. 14.
    Räihä, K.-J.: Some applications of string algorithms in human-computer interaction. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp. 196–209. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Tsang, H.Y., Tory, M., Swindells, C.: eseetrack: Visualizing sequential fixation patterns. IEEE Transactions on Visualization and Computer Graphics 16(6), 953–962 (2010)CrossRefGoogle Scholar
  16. 16.
    Hembrooke, H., Feusner, M., Gay, G.: Averaging scan patterns and what they can tell us. In: ETRA 2006, p. 41. ACM, New York (2006)Google Scholar
  17. 17.
    Goldberg, J.H., Helfman, J.I.: Scanpath clustering and aggregation. In: ETRA 2010, pp. 227–234. ACM, NY (2010)Google Scholar
  18. 18.
    Brown, A., Jay, C., Harper, S.: Tailored presentation of dynamic web content for audio browsers. International Journal of Human-Computer Studies 70(3), 179–196 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Sukru Eraslan
    • 1
    • 2
  • Yeliz Yes̨ilada
    • 1
  • Simon Harper
    • 2
  1. 1.Middle East Technical UniversityGuzelyurtTurkey
  2. 2.School of Computer ScienceUniversity of ManchesterUnited Kingdom

Personalised recommendations