Applying Ambient Intelligence to Improve Public Road Transport

  • Gabino Padrón
  • Carmelo R. García
  • Alexis Quesada-Arencibia
  • Francisco Alayón
  • Ricardo Pérez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8276)


This paper described the smart system that is executed on board the vehicles of the fleet of a public transport company whose mission is to help the regulating authorities to control, verify and enhance the public transport service. This system is autonomous and does not interfere in the operations carried out by the vehicle; it provides useful data obtained transparently from drivers and passengers, using different sensors installed in the vehicle. The system has been used in several vehicles of the public transport fleet’s in real operational conditions and some of the results obtained are presented here.


ambient intelligence ubiquitous computing ubiquitous data management intelligent transport systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furth, P., et al.: Data Analysis for Bus Planning and Monitoring. Transit Cooperative Research Program, Synthesis 34, 1–71 (2000)Google Scholar
  2. 2.
    Furth, P.G., Muller, T.H.J., Strathman, J.G., Hemily, B.: Uses of Archived AVL-APC Data to Improve Transit Management and Performance: Review and Potential. TCRP Web Document 23, Project H-28 (2003)Google Scholar
  3. 3.
    García, C.R., Padrón, G., Quesada-Arencibia, A., Alayón, F., Pérez, R.: Ubiquitous Data Management in Public Transport. In: Bravo, J., López-de-Ipiña, D., Moya, F. (eds.) UCAmI 2012. LNCS, vol. 7656, pp. 342–349. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Dell’Olio, L., Moura, J.L., Ibeas, A.: A bi-level mathematical programming model to locate bus stops and optimise frequencies. In: TRB 85th Annual Meeting and Transportation Research Record, Washington (2006)Google Scholar
  5. 5.
    Zhao, F.: Large Scale Transit Network Optimization by Minimizing User Cost and Transfers. Journal of Public Transportation 9(2) (2006)Google Scholar
  6. 6.
    Okunieff, P.: Dynamic Timetable Generator, Transit Cooperative Research Program, Transit IDEA Project 39, Final Report (2006)Google Scholar
  7. 7.
    Furth, P.G., Muller, T.H.J.: Services Reliability and Hidden Waiting Time: Insights from AVL Data. Transportation Research Record, 1–21 (2006)Google Scholar
  8. 8.
    Kong, Q., Chen, Y., Liu, Y.: A Fusion-Based System for Road-Network Traffic Satate Surveillance: A Case Study of Shanghai. IEEE Intelligent Transport Systems Magazine 3(2), 37–42 (2009)CrossRefGoogle Scholar
  9. 9.
    Coughlin, J.F., Reimer, B., Mehler, B.: Monitoring, Managing, and Motivating Driver Safety and Well-Being. IEEE Pervasive Computing 10(3), 14–21 (2011)CrossRefGoogle Scholar
  10. 10.
    Doshi, A., Morris, B.T., Trivedi, M.M.: On-Road Prediction of Driver’s Intent with Multimodal Sensory Cues. IEEE Pervasive Computing 10(3), 22–34 (2011)CrossRefGoogle Scholar
  11. 11.
    Dias Camacho, T., Foth, M., Rakotonirainy, A.: Pervasive Technology and Public Transport: Opportunities beyond Telematics. IEEE Pervasive Computing 12(1), 18–25 (2013)CrossRefGoogle Scholar
  12. 12.
    Zou, H., Hou, K., Li, J.: Intelligent Urban Public Transportation for Accessibility Dedicated to People with Disabilities. Sensors 12, 10678–10692 (2012)CrossRefGoogle Scholar
  13. 13.
    Perich, F., et al.: On Data Management in Pervasive Computing Environments. IEEE Transaction on Knowledge and Data Engineering 16(5), 621–663 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Gabino Padrón
    • 1
  • Carmelo R. García
    • 1
  • Alexis Quesada-Arencibia
    • 1
  • Francisco Alayón
    • 1
  • Ricardo Pérez
    • 1
  1. 1.Institute for Cybernetic Science and TechnologyUniversity of Las Palmas de Gran CanariaSpain

Personalised recommendations