Advertisement

Emergency Event Detection in Twitter Streams Based on Natural Language Processing

  • Bernhard Klein
  • Federico Castanedo
  • Iñigo Elejalde
  • Diego López-de-Ipiña
  • Alejandro Prada Nespral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8276)

Abstract

Real-time social media usage is widely adapted today because it encourages quick spreading of news within social networks. New opportunities arise to use social media feeds to detect emergencies and extract crucial information about that event to support rescue operations. A major challenge for the extraction of emergency event information from applications like Twitter is the big mass of data, inaccurate or lacking metadata and the noisy nature of the post text itself. We propose to filter the real-time media stream by analysing posts seriousity, extract facts through natural language processing and group posts using a novel event identification scheme. Based on a manually tagged social media feed corpus we show that false or missed alarms are limited to posts with highly ambiguous information with less value for the rescue units.

Keywords

Emergency detection social media mining natural language processing incremental clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Licamele, G.: Web metrics report from Fairfax county (2011), http://www.fairfaxcounty.gov/emergency/flooding-090811-metrics.pdf (last visited June 1, 2012)
  2. 2.
    Acar, A., Muraki, Y.: Twitter and natural disasters: Crisis communication lessons from the Japan tsunami. International Journal of Web Based Communities 7(3), 392–402 (2011)CrossRefGoogle Scholar
  3. 3.
    MacEachren, A.M., Jaiswal, A.R., Robinson, A.C., Pezanowski, S., Savelyev, A., Mitra, P., Zhang, X., Blanford, J.: SensePlace2: GeoTwitter Analytics for Situational Awareness. In: IEEE Conference on Visual Analytics Science and Technology (VAST 2011), Rhode Island, USA (2011)Google Scholar
  4. 4.
    Li, R., Lei, K., Khadiwala, R., Chang, K.: TEDAS: a Twitter Based Event Detection and Analysis System. In: Proc. of the 28th IEEE International Conference on Data Engineering (ICDE), Washington, USA (2012)Google Scholar
  5. 5.
    Abel, F., Hauff, C., Houben, G.-J., Stronkman, R., Tao, K.: Semantics + Filtering + Search = Twitcident Exploring Information in Social Web Streams. In: 21st International ACM Conference on Hypertext and Hypermedia (HT 2010), Toronto, Canada (2010)Google Scholar
  6. 6.
    Marcus, A., Bernstein, M., Badar, O., Karger, D., Madden, S., Miller, R.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proc. of ACM CHI Conference on Human Factors in Computing Systems, pp. 227–236 (2011)Google Scholar
  7. 7.
    Becker, H., Naaman, M., Gravano, L.: Beyond Trending Topics: Real-World Event Identification on Twitter. In: Proc. of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM) (2011)Google Scholar
  8. 8.
    Pohl, D., Bouchachia, A., Hellwagnerr, H.: Automatic Sub-Event Detection in Emergency Management Using Social Media. In: Proc. of the 1st International Workshop on Social Web for Disaster Management (SWDM 2012), pp. 683–686 (2012)Google Scholar
  9. 9.
    Verma, S., Vieweg, S., Corvey, W.J., Palen, L., Martin, J.H., Palmer, M., Schram, A., Anderson, K.M.: Natural Language Processing to the Rescue?: Extracting “Situational Awareness” Tweets During Mass Emergency. In: Proc. of Fifth International AAAI Conference on Weblogs and Social Media (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Bernhard Klein
    • 1
  • Federico Castanedo
    • 1
  • Iñigo Elejalde
    • 1
  • Diego López-de-Ipiña
    • 1
  • Alejandro Prada Nespral
    • 2
  1. 1.Deusto Institute of Technology (DeustoTech)University of DeustoBilbaoSpain
  2. 2.Treelogic, Parque Tecnológico de AsturiasAsturiasSpain

Personalised recommendations