Advertisement

Poás Volcano pp 155-202 | Cite as

Behaviour of Polythionates in the Acid Lake of Poás Volcano: Insights into Changes in the Magmatic-Hydrothermal Regime and Subaqueous Input of Volatiles

  • María Martínez-CruzEmail author
  • Manfred J. van Bergen
  • Bokuichiro Takano
  • Erick Fernández-Soto
  • Jorge Barquero-Hernández
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

In this chapter, we document an extensive record of concentrations and speciation of polythionates (PTs: S4O62−, S5O62−, and S6O62−), which form in the warm (21–60 °C) and hyper-acidic (pH < 1.8) waters of the crater lake of Poás volcano (Costa Rica) through interaction with gaseous SO2 and H2S of magmatic origin. Our data set, together with earlier published results, covers the period 1980–2006 during which lake properties and behavior were marked by significant variations. Distinct stages of activity can be defined when combining PT distributions with geochemical, geophysical and field observations. Between 1985 and mid-1987, when fumarolic outgassing was centered on-shore, the total concentration of PTs in the lake was consistently high (up to 4,200 mg/kg). Mid-1987 was the start of a 7-year period of vigorous fumarolic activity with intermittent phreatic eruptions from the lake, which then dried out. Concentrations of PTs remained below or close to detection limits throughout this period. After mid-1994, when a new lake formed and fumarolic outgassing shifted to the dome, the total PT concentrations returned to relatively stable intermediate levels (up to 2,800 mg/kg) marking more quiescent conditions. Since early 1995, numerous weak fumarole vents started, opening up at several other locations in the crater area. During short intervals (November 2001–May 2002 and October 2003–March 2005), PTs virtually disappeared. After April 2005, PTs re-appeared in large amounts (up to more than 3,000 mg/kg) until February 2006, one month before the onset of the March 2006–2017 cycle of phreatic eruptions, when concentrations dropped and remained below 100 mg/kg. The observed behavior of PTs records changes in the input and SO2/H2S ratios of subaqueous fumaroles. The prevailing distribution of PTs is S4O62− > S5O62− > S6O62−, which is common for periods when total PT concentrations and SO2/H2S ratios of the gas influx into the lake are relatively high. PTs are virtually absent as a consequence of thermal or sulphitolytic breakdown during periods of strong fumarolic outgassing in response to shallow intrusion of fresh magma or fracturing of the solid envelope around a pre-existing body of cooling magma. They are also low in abundance or undetected during quiescent periods when subaqueous fumarolic output is weak and has low SO2/H2S ratios, resulting in a concentration sequence S5O62− > S4O62− > S6O62−. The onset of phreatic eruptions are preceded by an increase in PT concentrations, accompanied by a change in the dominance from penta- to tetrathionate, and followed by a sharp drop in total PT content, up to several months before. Periods of phreatic eruptive activity that started in 1987 and 2006 followed these PT signals of increased input of sulfur-rich gas, in both cases possibly in response to shallow emplacement of fresh magma or hydrofracturing.

Keywords

Polythionates Sulphur chemistry Acid volcanic lakes Magmatic volatiles Magmatic-hydrothermal system Volcano monitoring Volcanic unrest 

Notes

Acknowledgements

We gratefully acknowledge the expert assistance of several colleagues with field and laboratory work, in particular Wendy Saénz Vargas (OVSICORI-UNA), Helen de Waard, Ronald Miltenburg, and Erick van Vilsteren (Utrecht University), as well as support from personnel of Poás Volcano National Park. MM thanks co-investigator Dr. Boku Takano for giving to a group of Costa Rica chemists and volcanologists the know-how on the chemistry of polythionates in acid lakes, and also for guiding us during field and laboratory work to learn on sampling and analysis of polythionate species using HPLC-UV techniques. Thanks also to Dr. Yasuyuki Miura (Tokai University) for advice on best practices to separate the thionates and other sulfur species by HPLC-UV. MM is very grateful with Dr. Takeshi Ohba (Tokai University) for training the chemists of OVSICORI-UNA on sampling and analyses of volcanic fluids from Poás and Turrialba volcano. Our sincere thanks also to the Japan International Cooperation Agency (JICA) for bringing to Costa Rica such a fine group of Japanese experts, Dr. Takano, Dr. Miura, and Dr. Ohba, to work with us at field and laboratory level. We are indebted to Dr. Juan Valdés González of the Laboratory of Atmospheric Chemistry of the School of Chemistry of Universidad Nacional (LAQAT-UNA) for providing access to its HPLC facility where part of the separation and analysis of polythionates were performed. We also thank the Instituto Costarricense de Electricidad (ICE) for providing rainfall data used in this chapter. MM acknowledges financial support from Utrecht University, Universidad Nacional, and the Ministry of Science, Technology, and Telecommunications of Costa Rica (MICIT). MM also thanks the financial contribution given by Dr. Karen McNally, Dr. Marino Protti, Dr. Ronnie Quintero, Lic. Jorge Brenes, Mr. Federico Chavarría Kopper, and the Roegiers Family (inSausalito California EEUU) for supporting this novel and exciting study.

References

  1. Aguilar E, Peterson TC, Ramírez P, Frutos R, Retana JA, Solera M, Soley J, González I, Araujo RM, Santos AR, Valle VE, Brunet M, Aguilar L, Álvarez L, Bautista M, Castañón C, Herrera L, Ruano E, Sinay JJ, Sánchez E, Hernández GI, Obed F, Salgado JE, Vázquez JL, Baca M, Gutiérrez M, Centella C, Espinoza J, Martínez D, Olmedo B, Ojeda CE, Núñez R, Haylock M, Benavides H, Mayorga R (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110(D23):107.  https://doi.org/10.1029/2005JD006119CrossRefGoogle Scholar
  2. Andres RJ, Barquero JA, Rose WI (1992) New measurements of SO2 flux at Poás Volcano, Costa Rica. J Volcanol Geoth Res 49:175–177Google Scholar
  3. Armienta MA, De la Cruz-Reyna S, Macías JL (2000) Chemical characteristics of the crater lakes of Popocatepetl, El Chichón, and Nevado de Toluca volcanoes, México. J Volcanol Geoth Res 97:105–125CrossRefGoogle Scholar
  4. Barquero JA (1998) Volcán Poás, Costa Rica, 1st edn. San José, Costa Rica. ISBN 9977-12-298-9Google Scholar
  5. Barquero JA, Fernández E (1983) Poás volcanic activity reports: strong continuous gas emission. SEAN (Scientific Event Alert Network) 8(10)Google Scholar
  6. Barquero JA, Malavassi E (1983) Estado de los volcanes, mayo 1982-abril 1983. Bol Vulcanol 13:3 (in Spanish)Google Scholar
  7. Barrancos J, Rosello JI, Calvo D, Padro E, Melián G, Hernández PA, Pérez NM, Millán MM, Galle B (2008) SO2 emission from active volcanoes measured simultaneously by COSPEC and mini-DOAS. Pure Appl Geophys 165:115–133CrossRefGoogle Scholar
  8. Bennett F, Raccichini S (1978a) Nuevos aspectos de las erupciones del volcán Poás. Rev Geogr Am Central 5–6:37–54Google Scholar
  9. Bennett F, Raccichini S (1978b) Subaqueous sulphur lake in Volcán Poás. Nature 271:342–344CrossRefGoogle Scholar
  10. Bernard A, Escobar CD, Mazot A, Gutiérrez RE (2004) The acid volcanic lake of Santa Ana volcano, El Salvador. Geol Soc Am Spec Pap 375:121–133Google Scholar
  11. Brown GC, Rymer H, Stevenson DS (1991) Volcano monitoring by microgravity and energy budget analysis. J Geol Soc London 148:585–593CrossRefGoogle Scholar
  12. Calvert AS, Calvert PP (1917) A year of Costa Rican natural history. Mac Millan, New York, Chap XVII, p 577Google Scholar
  13. Casadevall T, de la Cruz-Reyna S, Rose WI, Bagley S, Finnegan D, Zoller WH (1984a) Crater lake and post-eruption hydrothermal activity, El Chichón volcano, México. J Volcanol Geoth Res 97:1–30Google Scholar
  14. Casadevall T, Rose WI, Fuller WH, Hart MA, Moyers JL, Woods DC, Chuan RL, Friend JP (1984b) Sulfur dioxide from Poás, Arenal, and Colima volcanoes, Costa Rica and México. J Geophys Res 89:9633–9641CrossRefGoogle Scholar
  15. Casas AS, Armienta MA, Ramos SG (2015) Geochemical monitoring of Chichón volcano (México) through sulphur speciation of the crater lake’s water. EGU General Assembly 12–17 Apr 2015, Vienna (Austria), p 182Google Scholar
  16. Casertano L, Borgia A, Cigolini C, Morales L, Montero W, Gómez M, Fernández J (1985) Investigaciones geofísicas y características geoquímicas de las aguas hidrotermales: Volcán Poás, Costa Rica. Geofis Int 24:315–332Google Scholar
  17. Casertano L, Borgia A, Cigolini C, Morales LD, Gómez M, Fernández JF (1987) An integrated dynamic model for the volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 49:588–598Google Scholar
  18. Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal reservoir. J Volcanol Geoth Res 97:1–30CrossRefGoogle Scholar
  19. Christenson BW, Wood CP (1993) The evolution of a volcano-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:547–565CrossRefGoogle Scholar
  20. Day AL, Allen ET (1925) The volcanic activity and hot springs of Lassen Peak. Carnegie Institute of Washington Publications, p 360Google Scholar
  21. Debus H (1888) Chemical investigation of Wackenroder’s solution, and explanation of the formation of its constituents. J Chem Soc Trans 53:278–357CrossRefGoogle Scholar
  22. Delmelle P (1995) Geochemical, isotopic and heat budget study of two volcano hosted hydrothermal systems: the acid crater lakes of Kawah Ijen, Indonesia, and Taal, Philippines, volcanoes. PhD thesis, Université Libre de Bruxelles (Belgium)Google Scholar
  23. Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modelling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58:2445–2460CrossRefGoogle Scholar
  24. Delmelle P, Bernard A (2000) Volcanic lakes. In: Sigurdson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, USAGoogle Scholar
  25. Delmelle P, Bernard A (2015) The remarkable chemistry of sulfur in hyper acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Advances in volcanology.  https://doi.org/10.1007/978-3-642-36833-2_10
  26. Delmelle P, Bernard A, Kusakabe M, Fischer TP, Takano B (2000) Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geoth Res 97:31–53CrossRefGoogle Scholar
  27. Druschel GK, Hamers RJ, Banfield JF (2003) Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe3+. Geochim Cosmochim Acta 67:4457–4469CrossRefGoogle Scholar
  28. Fernández M (1990) Actividad del Volcán Poás, Costa Rica: Análisis sísmico durante el período 1980–1989. Msc thesis, Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, Costa Rica (in Spanish)Google Scholar
  29. Foss O (1960) Structures of compounds containing chains of sulphur atoms: sulfur chains terminated by sulfonate groups, the polythionates. In: Emeléus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry, vol 2. Elsevier Academic Press, NY, USAGoogle Scholar
  30. Fournier N, Rymer H, Williams-Jones G, Brenes J (2004) High-resolution gravity survey: investigation of subsurface structures at Poás Volcano, Costa Rica. Geophys Res Lett 31:L15602.  https://doi.org/10.1029/2004GL020563CrossRefGoogle Scholar
  31. Fujiwara Y, Ohsawa S, Watanuki K, Takano B (1988) Determination of polythionates in an active crater lake by nitrate ion-selective electrode. Geochem J 22:249–256CrossRefGoogle Scholar
  32. Giggenbach WF (1974) The chemistry of Crater Lake, Mt Ruapehu (New Zealand) during and after the 1971 active period. New Zealand J Sci 17:33–45Google Scholar
  33. Goehring M (1952) Die Chemie der Polythionsäuren. Fortschr Chem Forsch Bd. 2 S:444–483Google Scholar
  34. Hynek BM, Rogers KL, Antunovich M, Avard G, Alvarado GE (2018) Lack of microbial diversity in an extreme Mars analog setting: Poás volcano, Costa Rica. Astrobiol 18(7)Google Scholar
  35. IUPAC (1983) Solubility data series. Sulfur dioxide, chlorine, fluorine and chlorine oxides. In: Young CL (ed) vol 12. Pergamon, Oxford, UKGoogle Scholar
  36. IUPAC (1988) Solubility data series. Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide. In: Fogg PGT, Young CL (eds) vol 32. Pergamon, Oxford, UKGoogle Scholar
  37. Janitzki J (1969) Chemistry of polythionates and selenopolythionates. Acc Chem Res 2.  https://doi.org/10.1021/ar50022a005
  38. Koh T (1990) Analytical chemistry of polythionates and thiosulfate. A review. Anal Sci 6:3–14CrossRefGoogle Scholar
  39. Krushensky RD, Escalante G (1967) Activity of Irazú and Poás volcanoes, Costa Rica, November 1964–July 1965. Bull Volcanol 31:75–84CrossRefGoogle Scholar
  40. MacLaurin JS (1911) Occurrence of pentathionic acid in natural waters. Proc Chem Soc London 27:10–12Google Scholar
  41. Malavassi E, Barquero J (1982) Excursión al Volcán Poás. Proceed 1st US - Costa Rica joint seminar in volcanology. OVSICORI-UNA: Heredia-Costa Rica. Bol Vulcanol 14:119–131Google Scholar
  42. Martínez M (2008) Geochemical evolution of the acid crater lake of Poás Volcano (Costa Rica): insights into volcanic-hydrothermal processes. PhD thesis, Universiteit Utrecht, The Netherlands, 161 ppGoogle Scholar
  43. Martínez M, Fernández E, Valdés J, Barboza V, van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás Volcano, Costa Rica, 1993–1997. J Volcanol Geoth Res 97:127–141CrossRefGoogle Scholar
  44. Martínez M, Jiménez JD, Pereira R, Trescott SC, Pacheco JF, Porras H, Brenes G, Vega J, Herrera J (2017) Volcanes Poás y Rincón de la Vieja: Geoquímica y textura de piroclastos eruptados en las explosiones freatomagmáticas del 2017. In: Book of abstracts First Central America Congress on Earth Sciences 2017 Universidad Nacional Costa RicaGoogle Scholar
  45. McNutt S (2000) Seismic monitoring. In: Sigurdsson H (ed) Encyclopaedia of volcanoes. Academic Press, California, USAGoogle Scholar
  46. Miura Y, Kawaoi A (2000) Determination of thiosulphate, thiocyanate and polythionates in a mixture by ion-pair chromatography with ultraviolet absorbance detection. J Chrom A 884:81–87CrossRefGoogle Scholar
  47. Mora R, Ramírez C (2004) Physical changes in the hyperacidic hot lake of Poás volcano (2002–2004, Costa Rica). 6th Meeting IAVCEI committee on volcanic lakes, Caviahue, Argentina, Nov 2004Google Scholar
  48. Nicholson RA, Howells MF, Roberts PD, Baxter PJ (1992) Gas geochemistry studies at Poás Volcano, Costa Rica, Nov 1991. British Geol Surv Overseas Geology Series, Technical report No WC/92/10Google Scholar
  49. Nicholson RA, Howells MF, Baxter PJ, Clegg SL, Barquero J (1993) Gas geochemistry studies at Poás Volcano, Costa Rica, March 1992–January 1993. British Geol Survey, Overseas Geology Series, Technical report No WC/93/21Google Scholar
  50. Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane volcano, Japan: implications for the evolution of the magmatic hydrothermal system. J Volcanol Geoth Res 178:131–144CrossRefGoogle Scholar
  51. Oppenheimer C, Stevenson D (1989) Liquid sulfur lakes at Poás Volcano. Nature 342:90–793CrossRefGoogle Scholar
  52. OVSICORI (2006) Experto en medición remota de SO2 en plumas volcánicas de la Universidad de El Salvador comparte experiencia con vulcanólogos del OVSICORI-UNA, Costa Rica. Open report. http://www.ovsicori.una.ac.cr/informes_prensa/2006/Experto_en_medicion_de_SO2_nos_visita25abril2006.pdf
  53. Pasternack GB, Varekamp JC (1994) The geochemistry of the Keli Mutu crater lakes, Flores, Indonesia. Geoch J 28:243–262CrossRefGoogle Scholar
  54. Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:534–535CrossRefGoogle Scholar
  55. Prosser JT, Carr MJ (1987) Poás volcano, Costa Rica: geology of the summit region and spatial and temporal variations among the most recent lavas. J Volcanol Geoth Res 33:131–146CrossRefGoogle Scholar
  56. Rodríguez A (2016) Volcanic lake systems as terrestrial analogue for sulphate rich terrains on Mars. PhD thesis, Universiteit Utrecht, The Netherlands. ISBN/EAN:978-90-6266-436-8Google Scholar
  57. Rodríguez A, van Bergen MJ (2015) Volcanic hydrothermal systems as potential analogues of Martian sulphate rich terrains. Ned J Geosci. http://dx.doi.org/10.1017/njg.2015.12
  58. Rodríguez A, van Bergen MJ (2017) Superficial alteration mineralogy in active volcanic systems: an example of Poás volcano, Costa Rica. J Volcanol Geoth Res 346:54–80CrossRefGoogle Scholar
  59. Rouwet D, Tassi F, Mora R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geoth Res 272:78–97CrossRefGoogle Scholar
  60. Rouwet D, Mora-Amador R, Sandri L, Ramírez-Umaña C, González G, Pecoraino G, Capaccioni B (Chapter 9 of this book) 39 years of geochemical monitoring of Laguna Caliente crater lake, Poás: patterns from the past as keys for the future. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg, GermanyGoogle Scholar
  61. Rowe GL, Brantley SL, Fernández JF, Barquero J, Borgia A (1989) Observaciones preliminares del sistema hidrotermal del Volcán Poás, Costa Rica. Bol Vulcanol OVSICORI-UNA 20:23–31 (in Spanish)Google Scholar
  62. Rowe GL, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992a) Fluid volcano interaction in an active stratovolcano: the crater lake system of Poás Volcano, Costa Rica. J Volcanol Geoth Res 49:23–51CrossRefGoogle Scholar
  63. Rowe GL, Ohsawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992b) Using crater lake chemistry to predict volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 54:494–503CrossRefGoogle Scholar
  64. Rymer H, Cassidy J, Locke C, Barboza V, Barquero J, Brenes J, van der Laat R (2000) Geophysical studies of the recent 15-year eruptive cycle at Poás Volcano, Costa Rica. J Volcanol Geoth Res 97:425–442Google Scholar
  65. Rymer H, Fournier N, Williams-Jones G (2004) Persistent activity and its effect on microgravity variations at Poás volcano, Costa Rica. 2004 IAVCEI meeting, Pucón Chile, Nov 2004Google Scholar
  66. Rymer H, Locke C, Brenes J, Williams-Jones G (2005) Magma plumbing processes for persistent activity at Poás volcano, Costa Rica. Geophys Res Lett 32, L08307.  https://doi.org/10.1029/2004gl022284
  67. Rymer H, Locke CA, Borgia A, Martínez M, van der Laat R, Williams-Jones G (2009) Long term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova 21:304–309Google Scholar
  68. Shriver DF, Atkins PW (1999) The nitrogen and oxygen groups. In: Inorganic chemistry, 3rd edn. Oxford University Press, UKGoogle Scholar
  69. Sigurdsson H (1977) Chemistry of the crater lake during the 1971–72 Soufriére eruption. J Volcanol Geoth Res 2:165–186CrossRefGoogle Scholar
  70. Smolyaninov V, Shekhvatova G, Vainshtein M (2014) Gold leaching by organic base polythionates: new non toxic and secure technology. SpringerPlus 3:180.  https://doi.org/10.1186/2193-1801-3-180CrossRefGoogle Scholar
  71. Sriwana T, van Bergen MJ, Varekamp JC, Sumarti S, Takano B, van Os BJH, Leng MJ (2000) Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia. J Volcanol Geoth Res 97:77–104CrossRefGoogle Scholar
  72. Steudel R, Holdt G (1986) Ion-pair chromatographic separation of polythionates SnO62− with up to thirteen sulfur atoms. J Chromatogr 361:379–384CrossRefGoogle Scholar
  73. Stimac JA, Goff F, Counce D, Larocque ACL, Hilton DR, Morgenstern U (2003) The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after eruption. Bull Volcanol 66:149–167CrossRefGoogle Scholar
  74. Stoiber RE, Williams SN, Huebert BJ (1986) Annual contribution of sulfur dioxide to the atmosphere by volcanoes. J Volcanol Geoth Res 33:1–8CrossRefGoogle Scholar
  75. Sugimori K, Takano B, Matsuo M, Suzuki K, Fazlullin SM (1995) Activity of sulphur-oxidizing bacteria in the acidic crater lake of Maly Semiachik Volcano, Kamchatka. In: Kharaka YK, Chudaev OV (eds) Proceedings of the 8th international symposium water-rock interaction, Vladivostik, Russia. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  76. Sugimori K, Martínez M, Malavassi E, Fernández E, Duarte E, Segura J, Sáenz W, van Bergen MJ, Valdés J (2001) Microorganisms living in the acid lake of Poás volcano. 54th Annual meeting, Balneology Society Japan, Shirahama, Wakayama, 22–25 Aug 2001Google Scholar
  77. Sugimori K, Igarashi H, Martínez M, Duarte E, Fernández E, Malavassi E, van Bergen MJ, Segura J, Valdés J (2002) Microbial life in the acid lake and hot springs of Poás volcano. Colima volcano international meeting 2002, Colima, MexicoGoogle Scholar
  78. Symonds RB, Rose WI, Gerlach TM, Briggs PH, Harmon RS (1990) Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system. Bull Volcanol 52:355–374CrossRefGoogle Scholar
  79. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geoth Res 108:303–341CrossRefGoogle Scholar
  80. Takano B (1987) Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake. Science 235:1633–1635Google Scholar
  81. Takano B, Watanuki K (1988) Quenching and liquid chromatography determination of polythionates in natural water. Talanta 35:847–854Google Scholar
  82. Takano B, Watanuki K (1990) Monitoring of volcanic eruptions at Yugama Crater Lake by aqueous sulfur oxyanions. J Volcanol Geoth Res 40:71–87Google Scholar
  83. Takano B, Saitoh H, Takano E (1994a) Geochemical implications of subaqueous molten sulfur at Yugama Crater Lake, KusatsuShirane volcano, Japan. Geochem J 28:199–216CrossRefGoogle Scholar
  84. Takano B, Ohsawa S, Glover RB (1994b) Surveillance of Ruapehu crater lake, New Zealand, by aqueous polythionates. J Volcanol Geoth Res 60:29–57CrossRefGoogle Scholar
  85. Takano B, Matsuo M, Suzuki K (1995) Bathymetry and chemical investigation of crater lake at Maly Semiachik Volcano, Kamchatka. In: Kharaka YK, Chudaev OV (eds) Proceedings of the 8th international symposium water-rock interaction, Vladivostik, Russia. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  86. Takano B, Koshida M, Fujiwara Y, Sugimori K, Takayanagi S (1997) Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry 38:227–253CrossRefGoogle Scholar
  87. Takano B, Maekawa T, Zheng Q (2001) Kinetic study on aqueous polythionates and its application to active crater lake systems. In: Cidu R (ed) Proceedings of the 10th international symposium water-rock interaction, Balkema, Rotterdam, The Netherlands, pp 927–930Google Scholar
  88. Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukhyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen Crater Lake, East Java, Indonesia. J Volcanol Geoth Res 135:299–329CrossRefGoogle Scholar
  89. Takano B, Kuno A, Ohsawa S, Kawakami H (2008) Aqueous sulfur speciation possibly linked to sublimnic volcanic gas-water interaction during a quiescent period at Yugama crater lake, Kusatsu–Shirane volcano, Central Japan. J Volcanol Geoth Res 178:145–168Google Scholar
  90. Tassi F, Vaselli O, Fernández E, Duarte E, Martínez M, Delgado Huertas A, Bergamaschi F (2009) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68(2). doi.org/ https://doi.org/10.4081/jlimnol.2009.193
  91. Varekamp JC, Ouimette AP, Herman SW, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29:1059–1062CrossRefGoogle Scholar
  92. Vaselli O, Tassi F, Fischer TP, Tardani D, Fernandez Soto E, Duarte E, Martinez M, De Moor MJ, Bini G (Chapter 10) The last eighteen years (1998–2015) of fumarolic activity at the Poás volcano (Costa Rica) and the renewed activity. In: Tassi F, Mora-Amador R, Vaselli O, (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg, GermanyGoogle Scholar
  93. Vaselli O, Tassi F, Minissale A, Montegrossi G, Duarte E, Fernández E, Bergamaschi F (2003) Fumarole migration and fluid geochemistry at Poás Volcano (Costa Rica) from 1998 to 2001. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing, vol 213. Geological Society of London, Special Publications, pp 247–262Google Scholar
  94. Venzke E, Wunderman RW, McClelland L, Simkin T, Luhr JF, Siebert L, Mayberry G (eds) (2002) Global volcanism, 1968 to the present. Smithsonian Institute, Global Volcanism Program Digital Information Series, GVP-4 (http://www.volcano.si.edu/reports/). Accessed in Feb 2005
  95. Williams-Jones G, Stix J, Heiligmann M, Charland A, Sherwood Lollar B, Garzón V, G, Barquero J, Fernández E (2000) A model of diffuse degassing at three subduction-related volcanoes. Bull Volcanol 62:130–142Google Scholar
  96. Wilson SH (1941) Natural occurrence of polythionic acids. Nature 148:502–503CrossRefGoogle Scholar
  97. Wilson SH (1953) The elemental investigation of the hot springs of the New Zealand thermal region, vol 2. South Pacific Sci Congress, New Zealand, pp 449–469Google Scholar
  98. Wilson SH (1959) Physical and chemical investigations (White Island) 1939–1955. New Zealand Dept Sci Ind Res Bull 127:32–50Google Scholar
  99. Xia J, Rumpf B, Maurer G (1999) The solubility of sulfur dioxide in aqueous solutions of sodium chloride and ammonium chloride in the temperature range from 313 to 393 K at pressures up to 3.7 MPa: experimental results and comparisons with correlations. Fluid Phase Equilib 165:99–119CrossRefGoogle Scholar
  100. Xia J, Pérez A, Rumpf B, Maurer G (2000) Solubility of hydrogen sulfide in aqueous solutions of single strong electrolytes sodium nitrate, ammonium nitrate, and sodium hydroxide at temperatures from 313 to 393 K and total pressures up to 10 MPa. Fluid Phase Equilib 167:263–284CrossRefGoogle Scholar
  101. Xu Y, Schoonen MAA, Nordstrom DK, Cunningham KM, Ball JW (2000) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool. J Volcanol Geoth Res 178:145–168Google Scholar

Supplementary References

  1. Aki K, Fehler M, Das S (1977) Source mechanism of volcanic tremor: fluid-driven crack models and their application to the 1963 Kilauea eruption. J Volcanol Geoth Res 2:259–287CrossRefGoogle Scholar
  2. Andres RJ, Barquero JA, Rose WI (1992) New measurements of SO2 flux at Poás Volcano, Costa Rica. J Volcanol Geoth Res 49:175–177Google Scholar
  3. Casertano L, Borgia A, Cigolini C, Morales L, Montero W, Gómez M, Fernández J (1985) Investigaciones geofísicas y características geoquímicas de las aguas hidrotermales: Volcán Poás, Costa Rica. Geofis Int 24:315–332 (in Spanish with English abstract)Google Scholar
  4. Casertano L, Borgia A, Cigolini C, Morales LD, Gómez M, Fernández JF (1987) An integrated dynamic model for the volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 49:588–598Google Scholar
  5. Duarte E, Fernández E, Sáenz W, Malavassi E, Martínez M, Barquero J (2003) Wall instability and fumarole migration from 1999 to 2002, Poás Volcano, Costa Rica. In: Proceedings of the 8th field workshop on volcanic gases Nicaragua and Costa Rica 2003. IAVCEI-CCVGGoogle Scholar
  6. Fernández M (1990) Actividad del Volcán Poás, Costa Rica: Análisis sísmico durante el período 1980–1989. Msc thesis, Escuela Centroamericana de Geología, Universidad de Costa Rica, San José (Costa Rica) (in Spanish)Google Scholar
  7. Fernández E, Duarte E, Sáenz W, Malavassi E, Barboza V, Martínez M, Valdés J (2003) Volcanic gas condensates from Poás Volcano 1999–2000. Proceedings of the 8th field workshop on volcanic gases Nicaragua and Costa Rica 2003. IAVCEI-CCVGGoogle Scholar
  8. Fischer TP, Ramírez C, Mora RA, Hilton DR, Barnes JD, Sharp ZD, Le Brun M, de Moor JM, Barry PH, Füri E, Shaw AM (2015) Temporal variations in fumarole gas chemistry at Poás volcano, Costa Rica. J Volcanol Geoth Res 294:56–70CrossRefGoogle Scholar
  9. Fournier N, Williams-Jones G, Rymer H (2001) Sulphur budget at Poás Volcano. EOS Trans AGU 82(47), Fall Meet Suppl, Abstract V22E-12Google Scholar
  10. Fournier N, Williams-Jones G, Rymer H (2002) Sulphur budget at Poás Volcano, Costa Rica: a multidisciplinary approach. In: Proceedings of the volcanic and magmatic studies group annual meeting, 3–4 Jan 2002, University College London, England, UKGoogle Scholar
  11. Galle B (2002) Preliminary report from studies of volcanic SO2 emission in Nicaragua and Costa Rica, Mar 2002, using DOAS spectroscopy. Department of Radio and Space Science, Chalmers University of Technology, S-412 96 Gothenburg, SwedenGoogle Scholar
  12. García R, Fernández E, Duarte E, Castro C, Monnin M, Malavassi E, Barboza V (2003) Radon gas concentration monitoring: anomalies correlation found with volcanic activity after year 2000. In: Proceedings of the 8th field workshop on volcanic gases Nicaragua and Costa Rica 2003. IAVCEI-CCVGGoogle Scholar
  13. Goehring M, Feldmann U (1948) Neue Verfahren zur Darstellung von Kaliumpentathionat und von Kaliumhexathionat. Z Anorg Allg Chem 257:223–226CrossRefGoogle Scholar
  14. Martínez M (2008) Geochemical evolution of the acid crater lake of Poás Volcano (Costa Rica): insights into volcanic-hydrothermal processes. PhD thesis, Universiteit Utrecht, The Netherlands, 161 ppGoogle Scholar
  15. Martínez M, Fernández E, Valdés J, Barboza V, van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás Volcano, Costa Rica, 1993–1997. J Volcanol Geoth Res 97:127–141Google Scholar
  16. Melián G, Galindo I, Salazar J, Hernández P, Pérez N, Ramírez C, Fernández M, Notsu K (2001) Spatial and secular variations of diffuse CO2 degassing from Poás Volcano, Costa Rica, Central America. EOS Trans AGU 82(47), Fall Meet Suppl Abstract V31A-0951Google Scholar
  17. Melián GV, Galindo I, Salazar J, Pérez N, Hernández P, Fernández M, Ramírez C, Mora R, Alvarado GE (2003) Anomalous changes in diffuse hydrogen emission from Poás Volcano, Costa Rica, Central America: a premonitory geochemical signature of volcanic unrest? In: Proceedings of the 8th field workshop on volcanic gases Nicaragua and Costa Rica 2003. IAVCEI-CCVGGoogle Scholar
  18. Melián GV, Galindo I, Pérez N, Hernández P, Salazar J, Fernández M, Ramírez C, Mora R, Alvarado GE (2004) Emisión difusa de hidrógeno en el Volcán Poás, Costa Rica, América Central. In: Soto GJ, Alvarado GE (eds) La Vulcanología y su entorno geoambiental. Rev Geol Am Central 30:167–177 (in Spanish with English abstract)Google Scholar
  19. Melián GV, Pérez NM, Mora-Amador R, Hernández PA, Ramírez C, Sumino H, Alvarado GE, Fernández M (Chapter 6) Diffuse CO2 degassing and thermal energy release from Poás volcano, Costa Rica. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg, GermanyGoogle Scholar
  20. Melián GV, Pérez N, Hernández PA, Nolasco D, Marrero R, Fernández M, Ramírez C, Mora R, Alvarado GE (2010) Emisión difusa de CO2 y actividad volcánica en el volcán Poás, Costa Rica. Rev Geol Am Central 43:147–169 (in Spanish with English abstract)Google Scholar
  21. Miura Y, Kawaoi A (2000) Determination of thiosulphate, thiocyanate and polythionates in a mixture by ion-pair chromatography with ultraviolet absorbance detection. J Chrom A 884:81–87Google Scholar
  22. Mora R, Ramírez C (2004) Physical changes in the hyperacidic hot lake of Poás volcano (2002–2004, Costa Rica). In: Proceedings of the 6th meeting IAVCEI committee on volcanic lakes, Nov 2004, Caviahue, ArgentinaGoogle Scholar
  23. Nicholson RA, Howells MF, Roberts PD, Baxter PJ (1992) Gas geochemistry studies at Poás Volcano, Costa Rica, Nov 1991. British Geol Survey, Overseas Geology Series, Technical report No. WC/92/10Google Scholar
  24. Nicholson RA, Howells MF, Baxter PJ, Clegg SL, Barquero J (1993) Gas geochemistry studies at Poás Volcano, Costa Rica, March 1992–January 1993. British Geol Survey, Overseas Geology Series, Technical report No. WC/93/21Google Scholar
  25. Rowe GL, Ohsawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992a) Using Crater Lake chemistry to predict volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 54:494–503Google Scholar
  26. Rowe GL, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992b) Fluid volcano interaction in an active stratovolcano: the crater lake system of Poás Volcano, Costa Rica. J Volcanol Geoth Res 49:23–51Google Scholar
  27. Rowe GL (1994) Oxygen, hydrogen, and sulfur isotope systematics of the crater lake system of Poás Volcano, Costa Rica. Geochem J 28:263–287CrossRefGoogle Scholar
  28. Rymer H, Cassidy J, Locke C, Barboza V, Barquero J, Brenes J, van der Laat R (2000) Geophysical studies of the recent 15-year eruptive cycle at Poás Volcano, Costa Rica. J Volcanol Geoth Res 97:425–442Google Scholar
  29. Rymer H, Locke C, Brenes J, Williams-Jones G (2005) Magma plumbing processes for persistent activity at Poás volcano, Costa Rica. Geophys Res Lett 32.  https://doi.org/10.1029/2004gl022284
  30. Rymer H, Locke C, Borgia A, Martínez M, van der Laat R, Williams-Jones G (2009) Long term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova 2:304–309Google Scholar
  31. Stamm H, Goehring M, Feldmann U (1942) Zur Kenntnis der Polythionsäuren un ihrer Bildung-Neue Verfahren zur Darstellung von Kaliumtrithionat und von Kaliumtetrathionat. Z Anorg Allg Chem 250:226–228CrossRefGoogle Scholar
  32. Takano B (1987) Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake. Science 235:1633–1635Google Scholar
  33. Takano B, Watanuki K (1988) Quenching and liquid chromatography determination of polythionates in natural water. Talanta 35:847–854Google Scholar
  34. Takano B, Watanuki K (1990) Monitoring of volcanic eruptions at Yugama Crater Lake by aqueous sulfur oxyanions. J Volcanol Geoth Res 40:71–87Google Scholar
  35. Takano B, Ohsawa S, Glover RB (1994) Surveillance of Ruapehu crater lake, New Zealand, by aqueous polythionates. J Volcanol Geoth Res 60:29–57Google Scholar
  36. Takano B, Kuno A, Ohsawa S, Kawakami H (2008) Aqueous sulfur speciation possibly linked to sublimnic volcanic gas-water interaction during a quiescent period at Yugama crater lake, Kusatsu–Shirane volcano, Central Japan. J Volcanol Geoth Res 178:145–168Google Scholar
  37. Vaselli O, Tassi F, Minissale A, Montegrossi G, Duarte E, Fernández E, Bergamaschi F (2003) Fumarole migration and fluid geochemistry at Poás Volcano (Costa Rica) from 1998 to 2001. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing, vol 213. Geological Society London, Special Publications, pp 247–262Google Scholar
  38. Venzke E, Wunderman RW, McClelland L, Simkin T, Luhr JF, Siebert L, Mayberry G (eds) (2002) Global volcanism, 1968 to the present. Smithsonian Institution, Global Volcanism ProgramGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Martínez-Cruz
    • 1
    • 2
    Email author
  • Manfred J. van Bergen
    • 2
  • Bokuichiro Takano
    • 3
  • Erick Fernández-Soto
    • 1
  • Jorge Barquero-Hernández
    • 1
  1. 1.Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional OVSICORI-UNAHerediaCosta Rica
  2. 2.Faculty of Geosciences Universiteit UtrechtUtrechtThe Netherlands
  3. 3.Graduate School of Arts and SciencesThe University of TokyoMeguroJapan

Personalised recommendations