Poás Volcano pp 135-154 | Cite as

Diffuse CO2 Degassing and Thermal Energy Release from Poás Volcano, Costa Rica

  • Gladys V. MeliánEmail author
  • Nemesio M. Pérez
  • Raúl Alberto Mora Amador
  • Pedro A. Hernández
  • Carlos Ramírez
  • Hirochicka Sumino
  • Guillermo E. Alvarado
  • Mario Fernández
Part of the Active Volcanoes of the World book series (AVOLCAN)


During the period 2000–2003 four soil CO2 efflux surveys were carried out at Poás volcano (Costa Rica) to investigate the spatial distribution and evaluate the diffuse CO2 emission as well as its associated thermal energy. Inspection of soil CO2 efflux maps showed that the highest values were always identified inside the Main Crater of Poás, being the 2002 survey the one with the highest number of anomalous observed values. The spatial distribution of soil CO2 efflux and the δ13C–CO2 values in soil gas samples showed a positive correlation with the main volcanic-structural features of the area. Main soil CO2 efflux anomalies were identified close to fumaroles, where several acidic hot springs and soils with high permeability were recognized. Temporal evolution of diffuse CO2 emissions showed the lowest emission rate in 2000 (164 ± 15 t d−1), followed by a significant increase inside the active crater during 2001 and 2002 (423 ± 54 and 537 ± 69 t d−1, respectively) and with a relatively constant value in 2003 (542 ± 63 t d−1). These data correlated with the observed changes in the δ13C–CO2 mean value of collected soil gases. To estimate the thermal energy release associated with the diffuse CO2 degassing, we considered the diffuse CO2 emission released from the active crater as the most representative of a deep-seated source. Calculated thermal energy released through soil was estimated in 255, 548 and 831 MW for 2000, 2001 and 2003 surveys, respectively. Temporal variations of the diffuse CO2 degassing and thermal energy release also showed a good correlation with the δ13C–CO2 values and 3He/4He ratios measured in the fumarolic discharges of Poás during the same period, with a significant mantle-derived contribution. These observations evidenced the occurrence of changes in the shallow magmatic-hydrothermal system of Poás that were likely related to a potential magmatic intrusion during the period 2000–2003.


Soil CO2 efflux Carbon isotopes Thermal energy Poás volcano Costa rica 



We are indebted to Juan Dobles and all the staff of the Poás National Park for their assistance during the fieldworks. We would also like to thank COVIRENAS, students of the Escuela Centroamericana de Geología, Universidad de Costa Rica, and Juan Carlos Mesa for their help during this study. This research was supported by the Cabildo Insular de Tenerife, CajaCanarias (Canary Islands, Spain) and the CGL2005-07509/CLI project of the MICINN, Spain.


  1. Allard P, Le Bronec J, Morel P, Vavasseur C, Faivre-Ferret R, Robe MC, Roussel C, Zettowog P (1987) Geochemistry of soil gas emanations from Mt. Etna, Sicily. Terra Cognita 7(407):G17–52Google Scholar
  2. Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM Faivre-Ferret R, Martin D, Sabroux JC, Zettowog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391Google Scholar
  3. Arpa MC, Hernández PA, Padrón E, Reniva P, Padilla GD, Bariso E, Melián GV, Barrancos J, Nolasco D, Calvo D, Pérez NM, Solidum RU Jr (2013) Geochemical evidence of magma intrusion at Taal volcano, Philippines, in 2010–2011 from diffuse carbon dioxide emissions. Bull Volcanol 75:747. Scholar
  4. Baubron J, Allard P, Toutain J (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53CrossRefGoogle Scholar
  5. Brombach T, Hunziker J, Chiodini G, Cardellini C, Marini L (2001) Soil diffuse degassing and thermal energy flux from the southern Lakki plain, Nisyros (Greece). Geophys Res Lett 28:67–72CrossRefGoogle Scholar
  6. Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morale LD (1989) Energy budget analysis for Poás Crater Lake: implications for predicting volcanic activity. Nature 339:370–373CrossRefGoogle Scholar
  7. Brown G, Rymer H, Stevenson D (1991) Volcano monitoring by microgravity and energy budget analysis. J Geol Soc London 148:585–593CrossRefGoogle Scholar
  8. Caliro S, Chiodini G, Galluzzo G, Granieri D, La Rocca M, Saccorotti G, Ventura G (2004) Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data. Bull Volcanol 67:358–369CrossRefGoogle Scholar
  9. Carapezza M, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620CrossRefGoogle Scholar
  10. Carapezza M, Barberi F, Ranaldi M, Ricci T, Tarchini L, Barrancos J, Fischer C, Perez N, Weber K, Di Piazza A, Gattuso A (2011) Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hazards at Vulcano Island (Aeolian Arc, Italy). J Volcan Geotherm Res 207:130–144CrossRefGoogle Scholar
  11. Carbonelle J, Dajlevic D, LeBronce J, Morel P, Obert JC, Zettwoog P (1985) Etna: Composantes sommitales et pariétales des émission de gaz carbonique. Bull Programme Interdisciplinaire de Recherche sur la Prévision et la Surveillance des Eruptions Volcaniques—Centre National de la Recherche Scientifique 108:64Google Scholar
  12. Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108(B9):2425CrossRefGoogle Scholar
  13. Casertano L, Borgia A, Cigolini C, Morales LD, Montero W, Gomez M, Fernandez JF (1987) A integrated dynamic model for the volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 49:588–598CrossRefGoogle Scholar
  14. Cerling TE, Solomon DK, Quade J, Bowman JR et al (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochem Cosmochim Acta 55:3403–3405CrossRefGoogle Scholar
  15. Cheng WX (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant Soil 183:263–268CrossRefGoogle Scholar
  16. Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull Vulcanol 48:41–50CrossRefGoogle Scholar
  17. Chiodini G, Frondini F, Cardellini C, Grenieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italia. J Geophys Res 106(B8):16.213–16.221Google Scholar
  18. Chiodini G, Avino R, Brombach T, Caliro S, Cardellini C, De Vita S, Frondini F, Granieri D, Marotta E, Ventura G (2004) Fumarolic and diffuse soil degassing west of Mont Epomeo, Ischia, Italy. J Volcanol Geotherm Res 133:291–309CrossRefGoogle Scholar
  19. Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) Carbon dioxide degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110:B08204CrossRefGoogle Scholar
  20. Chiodini G, Baldini A, Barberi F, Carapezza ML, Cardellini C, Frondini F, Granieri D, Ranaldi M (2007) Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J Geophys Res 112:B12204CrossRefGoogle Scholar
  21. Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274:372–379CrossRefGoogle Scholar
  22. Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385CrossRefGoogle Scholar
  23. David M (1977) Geoestatistical ore reserve estimation, development in geomathematics 2. Elsevier Sci New York, 364 ppGoogle Scholar
  24. Deutsch C, Journel A (1998) GSLIB: geostatistical software library and users guide, 2nd edn. Oxford University Press, New York, p 369Google Scholar
  25. Dionis S, Melián G, Rodríguez F, Hernández PA, Padrón E, Pérez NM, Barrancos J, Padilla G, Sumino H, Fernandes P, Bandomo Z, Silva S, Pereira JM, Semedo H (2015) Diffuse volcanic gas emission and the termal energy release from the Summit crate of Pico do Fogo, Cape Verde. Bull Volcanol 77:1–13CrossRefGoogle Scholar
  26. Fischer TP, Ramírez C, Mora-Amador RA, Hilton DR, Barnes JD, Sharp ZD, Le Brun M, de Moor JM, Barry PH, Füri E, Shaw M (2015) Temporal variations in fumarole gas chemistry at Poás volcano, Costa Rica. J Volcan Geotherm Res 294:56–70CrossRefGoogle Scholar
  27. Fridriksson T, Kristjánsson BR, Ármannsson H, Margretadottir E, Olafsdottir S, Chiodini G (2006) CO2 emissions and heat flow trough soil, fumaroles, and steam heated mud poor at the Reykjanes geothermal area, SW Iceland. Appl Geochem 21:1551–1569CrossRefGoogle Scholar
  28. Frondini F, Chiodini G, Caliro S, Cardellini C, Granieri D, Ventura G (2004) Diffuse CO2 degassing at Vesuvio, Italia. Bull Volcanol 66:642–651CrossRefGoogle Scholar
  29. Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl Geochem 24:860–875CrossRefGoogle Scholar
  30. Gerlach T, Graeber E (1985) Volatile budget of Kilauea Volcano. Nature 313:273–277CrossRefGoogle Scholar
  31. Granieri D, Carapezza M, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33:L13316.1–L13316.4.
  32. Granieri D, Chiodini G, Avino R, Caliro S (2014) Carbon dioxide emission and heat release estimation for Pantelleria Island (Sicily, Italy). J Volcan Geotherm Res 275:22–33CrossRefGoogle Scholar
  33. Hernández PA, Notsu K, Salazar J, Mori T, Natale G, Okada H, Virgili G, Shimoike Y, Sato M, Pérez NM (2001a) Carbon dioxide degassing by advective flow from Usu Volcano, Japan. Science 292:83–86CrossRefGoogle Scholar
  34. Hernández PA, Salazar J, Shimoike Y, Mori T, Notsu K, Pérez NM (2001b) Diffuse emission of CO2 from Miyakejima Volcano, Japan. Chem Geol 177:175–185CrossRefGoogle Scholar
  35. Hernández PA, Perez N, Varekamp J (2007) Crater Lake temperature change of the 2005 Eruption of Santa Ana volcano, El Salvaor, Central America. Pure appl Geophys 164:2507–2522CrossRefGoogle Scholar
  36. Hernández PA, Padilla G, Padrón E, Pérez NM, David C, Dácil N, Melián G, Barrancos J, Dionis S, Fátima R, Hirochika S (2012a) Analysis of long- and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano, Lanzarote, Canary Islands. Appl Geochem 27:2486–2499CrossRefGoogle Scholar
  37. Hernández PA, Pérez N, Fridriksson T, Jolie E, Ilyinskaya E, Thárhallsson A, Ívarsson G, Gíslason G, Gunnarsson I, Jónsson B, Padrón E, Melián G, Mori T, Notsu K (2012b) Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland. Bull Volcanol 74:2435–2448CrossRefGoogle Scholar
  38. Hernández PA, Melián G, Giammanco S, Sortino F, Barrancos J, Pérez NM, Padrón E, López M, Donovan A, Mori T, Notsu K (2015) Contribution of CO2 and H2S emitted to the atmosphere by plume and diffuse degassing from volcanoes: the Etna volcano case study. Suv Geophys 36:327–349Google Scholar
  39. Hilton DR, Ramirez C, Mora Amador RA, Fischer TP, Füri E, Barry OH, Shaw AM (2010) Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poás and Turrialba volcanoes, Costa Rica (2001–2009). Geochem J 44:431–440CrossRefGoogle Scholar
  40. Hinkle M, Kilburn J (1979) The use of vacutainer tube for collection of soil sample for helium analysis. U. S. Geol Surv Open File Rep 79:1441Google Scholar
  41. Hust A, Dibble RR (1981) Bathymetry, heat output, and convection in Ruapehu Crater Lake, New Zealeand. J Volcanol Geotherm Res 9:215–236CrossRefGoogle Scholar
  42. Keenan JH, Keyes FG, Hill PG, Keyes FG, Moore JG (1969) Steam tables—thermodynamic properties of water including vapor, liquid and solid phases. International Edition Metric Units. Wiley, New York, 162 ppGoogle Scholar
  43. Lecinsky J, Hilley G, Tosha T, Aoyagi R, Yamamoto K, Benson SM (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34:L03401. Scholar
  44. Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature: developments in geochemistry 3. Elsevier, Amsterdam, p 273Google Scholar
  45. Martinez M, Fernandez E, Valdés J, Barboza V, Van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás volcano, Costa Rica, 1993–1997. J Volcanol Geotherm Res 97:127–141CrossRefGoogle Scholar
  46. Matsuda J, Matsumoto T, Sumino H, Nagao K, Yamamoto J, Miura Y, Kaneoka I, Takahata N, Sano Y (2002) The 3He/4He ratio of the new internal He standard of Japan (HESJ). Geochem J 36:191–195CrossRefGoogle Scholar
  47. Melián G (2008) Emisión difusa de dióxido de carbono y otros volátiles en el volcán Poás, Costa Rica. Thesis Univ La Laguna Canary Islands, América Central (In Spanish)Google Scholar
  48. Melián G, Pérez NM, Hernández PA, Salazar JML, Yock A, Sánchez E, Alvarado GE, Sumino H, Notsu K (2004) Emisión Difusa de Dióxido de Carbono y Vapor de Mercurio en el volcán Miravalles, Costa Rica, Eds. G. Soto and G. Alvarado, La Vulcanología y su entorno Geoambiental. Rev Geol Am Central 30:179–188. (In Spanish with English abstract)Google Scholar
  49. Melián G, Galindo I, Pérez NM, Hernández P, Fernández M, Ramírez C, Mora-Amador R, Alvarado GE (2007) Diffuse emission of hydrogen from Poás volcano, Costa Rica, America Central. PAGEOPH Special Issue “Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita vol. II” 164(12):2465–2487.
  50. Melián G, Tassi F, Pérez N, Hernández P, Sortino F, Vaselli O, Padrón E, Nolasco D, Barrancos J, Padilla G, Rodríguez F, Dionis S, Calvo D, Notsu K, Sumino H (2012) A magmatic source for fumaroles and diffuse degassing from the summit crater of Teide volcano (Tenerife, Canary Islands): geochemical evidence for the 2004–05 seismic-volcanic crisis. Bull Volcanol 74:1465–1483CrossRefGoogle Scholar
  51. Melián G, Hernández PA, Padrón E, Pérez NM, Barrancos J, Padilla G, Dionis S, Rodríguez F, Calvo D, Nolasco D (2014) Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: relation to the 2011–2012 submarine eruption. J Geophys Res Solid Earth 119:6976–6991CrossRefGoogle Scholar
  52. Mora R., Ramírez C, Fernández M (2004) La actividad de los volcanes de la Cordillera Central, 1998–2002, Costa Rica. In: Soto G, Alvarado GE (eds) La Vulcanología y su entorno Geoambiental. Rev Geol Am Central 30:189–197Google Scholar
  53. Nolasco D, Melián G, Galindo I, Hernández PA, Salazar JML, Pérez NM, Fernández M, Ramírez C, Alvarado GE (2003) Diffuse mercury degassing at Poás Volcano, Costa Rica, Central America. EOS, Trans Am Geophy Union 84, Fall Meet Suppl Abstract F11513Google Scholar
  54. Notsu K, Sugiyama K, Hosoe M, Uemura A, Shimoike Y, Tsunomori F, Sumino H, Yamamoto J, Mori T, Hernández PA (2005) Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J Volcanol Geother Res 139:147–161Google Scholar
  55. Padrón E, Melián G, Marrero R, Nolasco D, Barrancos J, Padilla G, Hernández PA, Pérez NM (2008a) Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands. Pure appl Geophys 165:95–114CrossRefGoogle Scholar
  56. Padrón E, Hernández PA, Toulkeridis T, Pérez NM, Marrero R, Melián G, Virgili G, Notsu K (2008b) Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. J Volcanol Geotherm Res 176:163–169Google Scholar
  57. Padrón E, Hernández PA, Pérez NM, Toulkeridis T, Melián G, Barrancos J, Virgili G, Sumino H, Notsu K (2012) Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago. Bull Volcanol 74:1509–1519CrossRefGoogle Scholar
  58. Padrón E, Pérez N, Rodríguez F, Melián G, Hernández PA, Sumino H, Padilla G, Barrancos J, Dionis S, Notsu K, Calvo D (2015) Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands. Bull Volcanol 77:1–15. Scholar
  59. Parkinson K (1981) An improved method for measuring soil respiration in the field. J Appl Ecol 18:221–228CrossRefGoogle Scholar
  60. Pasternack G, Varekamp J (1997) Volcanic lake systematics: I. Physical constraints. Bull Volcanol 58:528–538CrossRefGoogle Scholar
  61. Pérez N, Salazar J, Hernández P, Soriano T, López DL, Notsu K (2004) Diffuse CO2 and 222Rn degassing from San Salvador volcano, El Salvador, Central America. Bull Geol Soc Am Special Paper 375:227–236Google Scholar
  62. Pérez N, Hernández P, Padrón E, Cartagena R, Olmos R, Barahona F, Melián G, Salazar P, López DL (2006) Anomalous diffuse CO2 emission prior to the January 2002 short-term Unrest at San Miguel Volcano, El Salvador, Central America. Pure Appl Geophys 163(4):883–896CrossRefGoogle Scholar
  63. Pérez N, Hernández P, Padrón E, Melián G, Nolasco D, Barrancos J, Padilla G, Calvo D, Rodríguez F, Dionis S, Chiodini G (2013) An increasing trend of diffuse CO2 emission from Teide volcano (Tenerife, Canary Islands): geochemical evidence of magma degassing episodes. J Geol Soc London.
  64. Rizzo A, Grassa F, Inguaggiato S, Liotta M, Longo M, Madonia P, Brusca L, Capasso G, Morici S, Rouwet D, Vita F (2009) Geochemical evaluation of observed changes in volcanic activity during the 2007 eruption at Stromboli (Italy). J Volcanol Geotherm Res 182:246–254CrossRefGoogle Scholar
  65. Rowe G, Brantley S, Fernández M, Fernández JF, Barquero J, Borgia A (1992a) Fluid-volcano interacting in an active stratovolcano: the Crater Lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51CrossRefGoogle Scholar
  66. Rowe G, Ohsawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992b) Using Crater Lake chemistry to predict volcanic activity at Poás volcano, Costa Rica. Bull Volcanol 54:494–503CrossRefGoogle Scholar
  67. Rowe G, Brantley S, Fernández J, Borgia A (1995) The chemical and hydrologic structure of Poás volcano, Costa Rica. J Volcanol Geotherm Res 64:233–267CrossRefGoogle Scholar
  68. Rouwet D, Mora-Amador R, Sandri L, Ramírez-Umaña C, González G, Pecoraino G, Capaccioni B (Chapter 9) 39 years of geochemical monitoring of Laguna Caliente crater lake, Poás: Patterns from the past as keys for the future. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  69. Rymer H, Brown G (1989) Gravity changes as a precursor to volcanic eruption at Poás volcano, Costa Rica. Nature 342:902–905CrossRefGoogle Scholar
  70. Rymer H, Locke C, Brenes J, Williams-Jones G (2005) Magma plumbing processes for persistent activity at Poás volcano, Costa Rica. Geophys Res Lett 32:L08307. Scholar
  71. Rymer H, Locke CA, Borgia A, Martinez M, Brenes J, Van der Laat R, Williams-Jones G (2009) Long-term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova 21:304–309CrossRefGoogle Scholar
  72. Sano Y, Wakita H (1985) Geographical distribution of 3He/4He ratios in Japan: Implication for arc tectonics and incipient magmatism. J Geophy Res 90:8719–8741CrossRefGoogle Scholar
  73. Sheperd J, Sigurdsson H (1978) The Soufriere Crater Lake as a calorimeter. Nature 271:344–345CrossRefGoogle Scholar
  74. Sinclair A (1974) Selection of thresholds in geochemical data using probability graphs. J Geochem Expl 3:129–149CrossRefGoogle Scholar
  75. Snyder G, Poreda R, Hunt A, Fehn U (2001) Regional variations in volatile composition: Isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem Geophys Geosys 2:U1–U32CrossRefGoogle Scholar
  76. Sumino H, Nagao K, Notsu K (2001) Highly sensitive and precise measurement of helium isotopes using a mass spectrometer with double collector system. J Mass Spectrom Soc Jap 49:61–68CrossRefGoogle Scholar
  77. Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J Volcanol Geother Res 175:472–481CrossRefGoogle Scholar
  78. Tennant C, White M (1959) Study of the distribution of some geochemical data. Econ Geol 54:1281–1290CrossRefGoogle Scholar
  79. Vaselli O, Tassi F, Fischer TP, Tardani D, Fernandez Soto E, Duarte E, Martinez M, De Moor MJ, Bini G (Chapter 10). The last eighteen years (1998–2015) of fumarolic activity at the Poás volcano (Costa Rica) and the renewed activity. In: Tassi F, Mora-Amador R, Vaselli O, (eds) Poás volcano (Costa Rica): The pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  80. Vaselli O, Tassi F, Montegrossi G, Duarte E, Fernández E, Bergamaschi F (2003) Fumarole migration and fluid chemistry at Poás volcano (Costa Rica) from 1998 to 2001. In: Oppenheimer C, Pyle DM, Barkley J (eds) Volcanic degassing. Geol Soc London, Special Publications 213:247–262.
  81. Vannucchi P, Mason JP (Chapter 1) Overview of the tectonics and geodynamics of Costa Rica Eds. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  82. Zimmer MM, Fischer TP, Hilton DR, Alvarado GE, Sharp ZD, Walker JA (2004) Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arcGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gladys V. Melián
    • 1
    • 2
    • 3
    Email author
  • Nemesio M. Pérez
    • 1
    • 2
    • 3
  • Raúl Alberto Mora Amador
    • 4
  • Pedro A. Hernández
    • 1
    • 2
    • 3
  • Carlos Ramírez
    • 5
  • Hirochicka Sumino
    • 6
  • Guillermo E. Alvarado
    • 7
  • Mario Fernández
    • 5
  1. 1.Environmental Research DivisionInstituto Tecnológico y de Energías Renovables (ITER)Granadilla de AbonaSpain
  2. 2.Instituto Volcanológico de Canarias (INVOLCAN)San Cristóbal de La LagunaSpain
  3. 3.Agencia Insular de Energía de Tenerife (AIET)Granadilla de AbonaSpain
  4. 4.Escuela Centroamericana de Geología, University of Costa Rica (UCR)San JoséCosta Rica
  5. 5.Centro de Investigaciones en Ciencias Geológicas (CICG), University of Costa Rica (UCR)San JoséCosta Rica
  6. 6.Department of Basic Science, Graduate School of Arts and SciencesUniversity of TokyoMeguro-ku, TokyoJapan
  7. 7.Área de Amenazas y Auscultación Sismológica y Volcánica, Instituto Costarricense de Electricidad (ICE), ApdoSan JoseCosta Rica

Personalised recommendations