Advertisement

Coseismic Landslide Susceptibility Analysis Using LiDAR Data PGA Attenuation and GIS: The Case of Poás Volcano, Costa Rica, Central America

  • Paulo RuizEmail author
  • Michael J. Carr
  • Guillermo E. Alvarado
  • Gerardo J. Soto
  • Sara Mana
  • Mark D. Feigenson
  • Luis F. Sáenz
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

A landslide susceptibility model for Poás volcano was created in response to the most recent event that triggered landslides in the area (the Mw 6.2 Cinchona earthquake, which occurred on the 8th of January, 2009). This earthquake was the sixth event related to destructive landslides in the last 250 yr in this area and it severely affected important infrastructures. This chapter refers to a study, which consisted of three phases, as follows: (1) creation of a post-Cinchona earthquake landslide catalog, which was done manually based on a set of high resolution orthophotos and LiDAR data and it includes 4,846 landslides; (2) a landslide susceptibility model, based on the Mora-Vahrson-Mora method, the data from our landslide inventory, and a new modeling of earthquake triggering indicators based on the attenuation of the peak ground acceleration of the event, and (3) an evaluation of the methodology used, which for the Cinchona case resulted in an overlap of the actual landslides and the higher susceptibility zones of ~97%. Based on our new methodology, four landslide susceptibility models were simulated: the Cinchona earthquake, the Mw 5.5 Sarchí earthquake 1912, and two hypothetical earthquakes: one on the Angel fault (Mw 6.0) and the other one on the San Miguel fault (Mw 7.0). The Toro and Sarapiquí river canyons, the non-vegetated corridor located west from the main crater of Poás and the areas where the La Paz Andesites Unit are located are always the zones with the highest susceptibility to slide values. Meanwhile, the northern part of the study area, where the Río Cuarto Lavas unit outcrops, always presented the lowest susceptibility values due to both the low slope angles and weathering level of its rocks.

Keywords

Landslide susceptibility Coseismic landslides Cinchona earthquake Costa Rica Poás volcano 

Notes

Acknowledgements

Field work logistics and acquisition of the LiDAR data were possible only by the efforts and support offered by the Costa Rican Institute for Electricity (ICE), which is highly acknowledged. The rainfall data of the study area were obtained thanks to the Costa Rican Meteorological Institute (IMN). Reviews and suggestions by Sergio Mora and Scott Burns and an anonymous reviewer are warmly thanked.

References

  1. Alvarado GE, Morales LD, Montero W, Climent A, Rojas W (1988) Aspectos sismológicos y morfo tectónicos del extremo occidental de la Cordillera Volcánica Central, Costa Rica. Rev Geol Amér Central 9:75–98Google Scholar
  2. Alvarado GE, Carr MJ (1993) The Platanar-Aguas Zarcas volcanic centers, Costa Rica: spatial-temporal association of Quaternary calc-alkaline and alkaline volcanism. Bull Volcanol 55:443–453CrossRefGoogle Scholar
  3. Alvarado GE (2009) Los volcanes de Costa Rica: Geología, historia, riqueza natural y su gente. 3rd edn, 32, Editorial Universidad Estatal a Distancia, Costa Rica, 330 pp (In Spanish)Google Scholar
  4. Alvarado GE (2010) Aspectos Geohidrológicos y sedimentológicos de los flujos de lodo asociados al terremoto de Cinchona (Mw 6,2) Del 8 de enero del 2009, Costa Rica. Rev Geol Amér Central 43:67–96 (In Spanish with English abstract)Google Scholar
  5. Arredondo SG, Soto GJ (2006) Edad de las lavas del Miembro Los Bambinos y sumario cronoestratigráfico de la Formación Barva, Costa Rica. Rev Geol Amér Central 34–35:59–71 (In Spanish with English abstract)Google Scholar
  6. Barquero R, Peraldo G (1993) El temblor de Pejibaye de Turrialba del 10 de Julio de 1993: aspectos sismológicos, neotectónicos y geotécnicos. Informe interno del Instituto Costarricense de Electricidad 1–32 (In Spanish)Google Scholar
  7. Bommer JJ, Rodríguez CE (2002) Earthquake-induced landslides in Central America. Eng Geol 63:189–220CrossRefGoogle Scholar
  8. Bonell M, Gilmour DA, Sinclair SF (1981) Soil hydraulic properties and their effect on surface water transfer in tropical rainforest catchment. Hydrol Sci Bull 26:1–18CrossRefGoogle Scholar
  9. Borgia A, Burr J, Montero W, Morales LD, Alvarado GE (1990) Fault propagation folds induced by gravitational failure and slumping of the Central America Costa Rica volcanic range: implications for large terrestrial and Martian volcanic edifices. J Geophys Res 95(B9):14357–14382CrossRefGoogle Scholar
  10. Boschini I, Alvarado G, Rojas W (1988) El terremoto de Buena Vista de Pérez Zeledón (Julio 3, 1983): Evidencia de una fuente sismológica intraplaca desconocida en Costa Rica. Rev Geol Am Central 8:111–120 (In Spanish with English abstract)Google Scholar
  11. Carr MJ, Saginor I, Alvarado GE, Bolge L, Lindsay F, Milidakis K, Turrin B, Feigenson MD, Swisher III CC (2007) Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochem Geophys Geosyst 8(6):1–22 Q06001.  https://doi.org/10.1029/2006gc001396
  12. CIESIN, Center for International Earth Science Information Network, Columbia University; FAO, United Nations Food and Agriculture Programme, CIAT, Centro Internacional de Agricultura Tropical (2005) Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University, Nov 2011. Available at http://sedac.ciesin.columbia.edu/gpw
  13. Clift P, Vannucchi P (2004) Controls on tectonics accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42, RG2001.  https://doi.org/10.1029/2003rg00127
  14. Climent A, Moya A (2009) Registros acelerográficos obtenidos durante el terremoto de Cinchona del 8 de enero de 2009, Costa Rica. Memoria electrónica, 10th national congress of geotechnics and 5th Central-American congress of geotechnicians, Aug 2009, San José Costa Rica, pp 19–21Google Scholar
  15. Climent A, Rojas W, Alvarado GE, Benito B (2009) Costa Rica. In: Benito B, Torres Y (eds) Amenaza sísmica en América Central. Entinema, Madrid, pp 229–251Google Scholar
  16. Evans SG, Bent AL (2004) The Las Colinas landslide, Santa Tecla: a highly destructive flowslide triggered by the January 13, 2001, El Salvador earthquake. In: Rose WI, Bommer, JJ Lopez DL, Carr MJ, Major JJ (eds), Natural hazards in El Salvador, Geol Soc Am, Special Paper 375:25–38Google Scholar
  17. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Inter 181:1–80.  https://doi.org/10.1111/j.1365-246X.2009.04491.xCrossRefGoogle Scholar
  18. Fernández-Arce M, Mora-Amador R (Chapter 5) Seismicity of Poás volcano, Costa Rica. In: Tassi F, Mora-Amador R, Vaselli O, (eds) Poás volcano (Costa Rica): The pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  19. Garwood NC, Janos DP, Brokaw N (1979) Earthquake-caused landslides: A major disturbance to tropical forests. Science 205:997–999CrossRefGoogle Scholar
  20. Gazel E, Ruiz P (2005) Los Conos piroclasticos de Sabana Redonda: Componente magmático enriquecido del volcán Poas, Costa rica. Rev Geol Am Central 33:45–60 (In Spanish with English abstract)Google Scholar
  21. GVN (2009) Fatalities from a large earthquake; slide and minor eruption in crater. Smithsonian Institution, BGVN 34:01Google Scholar
  22. Holbrook WS, Lizarralde D, McGeaary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27:31–34CrossRefGoogle Scholar
  23. Hovius N, Stark CP, Allen PA (1997) Sediment flux from mountain belt derived by landslide mapping. Geology 25:231–234CrossRefGoogle Scholar
  24. ICE (Instituto Costarricense de Electricidad), Sector de energía UEN proyectos y servicios asociados (2008) Manejo de los sedimentos del embalse del P.H. Cariblanco. Internal Report ICE, San José, pp 25–50 (In Spanish)Google Scholar
  25. IMN (Instituto Meteorológico Nacional-Costa Rica (2008a) Boletín Meteorológico Año XXXIII November 2008 ISSN-1659-0465:1-29 (In Spanish)Google Scholar
  26. IMN (Instituto Meteorológico Nacional-Costa Rica (2008b) Boletín Meteorológico Año XXXIII December 2008 ISSN-1659-0465:1-30 (In Spanish)Google Scholar
  27. Julian BR, Sipkin SA (1985) Earthquake Processes in the Long Valley Caldera Area, California. J Geophys Res 90:11155–11169CrossRefGoogle Scholar
  28. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  29. Kerle N, van Wyk de Vries (2001) The 1998 debris avalanche at Casitas volcano, Nicaragua investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res l105:49–63Google Scholar
  30. Laporte G (2009a) Taludes y sismos. Comportamiento dinámico de taludes durante el sismo de Cinchona y sus implicaciones al diseño geotécnico. Boll Geotécn Notisuelos 10:6–7 (In Spanish)Google Scholar
  31. Laporte G (2009b) Efectos de los sismos en el comportamiento de las laderas naturales, cortes y rellenos: caso del sismo de Cinchona. 10th National Congress of Geotechnics, 5th Central-America Meeting of Geotechnicians, San José, Costa Rica, August 2009, Memoria digital: 10 (In Spanish)Google Scholar
  32. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion caused by hillslope material. Nature Geosci 3:247–251CrossRefGoogle Scholar
  33. Linkimer L (2008) Relationship between peak ground acceleration and modified Mercalli Intensity in Costa Rica. Rev Geol Am Central 38:81–94 (In Spanish with English abstract)Google Scholar
  34. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslides, earthquake, and erosion. Earth Planet Sci Lett 229:45–59CrossRefGoogle Scholar
  35. Marshall AJ (1937) Northern New Guinea, 1936. Geograph J 89:489–506CrossRefGoogle Scholar
  36. Marshall JS, Fisher DM, Gardner TW (2000) Central Costa Rica deformed belt: kinematics of diffuse faulting across the Western Panama block. Tectonics 19:468–492CrossRefGoogle Scholar
  37. Méndez J, Soto GJ, Zamora N, Vargas A, Sjöbohm L, Bonilla E, Barahona D, Solís L, Kycl P, Baroň I (2009) Geología de los deslizamientos provocados por el Terremoto de Cinchona, Costa Rica (Mw 6,2; 8 de enero del 2009) en la Ruta 126 (Varablanca-San Miguel). 10th National Congress of Geotechnics, 5th Central-America Meeting of Geotechnicians, San José, Costa Rica, August 2009, Memoria digital: 22 (In Spanish)Google Scholar
  38. Montero W (1999) El terremoto de 1924 (Ms 7, 0): Un gran temblor intraplaca relacionado al límite incipiente entre la placa Caribe y la microplaca de Panamá? Rev Geol Am Central 22:25–62 (In Spanish with English abstract)Google Scholar
  39. Montero W (2001) Neotectonica de la región central de Costa Rica: frontera oeste de la microplaca de Panamá. Rev Geol Am Central 24:29–56 (In Spanish with English abstract)Google Scholar
  40. Montero W, Rojas W, Boschini I, Barquero R, Flores H (1991) Neotectonica de la región de Puriscal. Origen de la sismicidad de mayo-diciembre de 1990. Memorias 51 Seminario Nacional de Geotecnia—Ier Encuentro Centroamericano de Geotecnistas, pp 4.38–4.51Google Scholar
  41. Montero W, Alvarado GE (1995) El terremoto de Patillos del 30 de diciembre de 1952 (Ms = 5.9) y el contexto geotectónico de la región del volcán Irazú, Costa Rica. Rev Geol Am Central 18:25–40 (In Spanish with English abstract)Google Scholar
  42. Montero W, Soto GJ, Alvarado GE, Rojas W (2010) Division del deslizamiento tectónico y transtensión en el macizo del volcán Poas (Costa Rica), Basado en Estudios Neotectónicos y de sismicidad histórica. Rev Geol Am Central 43:13–36 (In Spanish with English abstract)Google Scholar
  43. Mora R, Mora S, Vahrson W (1992) Microzonificación de la amenaza de deslizamientos y resultados obtenidos en el área del valle central de Costa Rica. Escala 1:286 000 Cepredenac, San José Costa Rica (In Spanish)Google Scholar
  44. Mora R, Chávez J, Vásquez M (2002) Zonificación de la susceptibilidad al deslizamiento: Resultados obtenidos para la Península de Papagayo mediante la modificación del método Mora & Vahrson (Mora et al., 1992). Memoria del tercer curso internacional sobre microzonificación y su aplicación en la mitigación de desastres. Lima, Perú, pp 38–46Google Scholar
  45. Mora S (1985) Las laderas inestables de Costa Rica. Rev Geol Am Central 3:131–161Google Scholar
  46. Mora S (1989) Extend and social-economic significance of slope instability in Costa Rica. In: Brabb E, Harrod L (eds) Landslides: extend and economic significance. Balkema, Rotterdam, pp 93–99Google Scholar
  47. Mora S, Vahrson G (1993) Macro-zoning landslide hazards. Manual for zonation on seismic geotechnical hazards. Jap Geotechn Soc pp 58–61, 128–136Google Scholar
  48. Mora C, Vahrson WG (1994) Macrozonation methodology for landslide hazard determination. Bull Ass Eng Geol 31:49–58Google Scholar
  49. Mora S, Mora R (1994) Los Deslizamientos por el Terremoto de Limón: Factores de Control y comparación con otros eventos en Costa Rica, Rev Geol Am Central, Special Issue, Terremoto de Limón, pp 139–152 (In Spanish with English abstract)Google Scholar
  50. Pain CF (1972) Characteristics and geomorphic effects of earthquake-initiated landslides in the Adelbert Range, Papua New Guinea. Eng Geol 6:261–274CrossRefGoogle Scholar
  51. Paniagua S, Soto GE (1986) Reconocimiento de los riesgos volcánicos potenciales de la cordillera central de Costa Rica. Rev Cienc Tecn 10:49–72 (In Spanish with English abstract)Google Scholar
  52. Parker RN, Densmore AL, Rosser NJ, de Michele M, Yong L, Runqiu H, Whadcoat S (2011) Mass wasting triggered by the 2008 Wenchuan earthquake greater than orogenic growth. Nat Geosci 4:449–452CrossRefGoogle Scholar
  53. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  54. Peraldo G, Montero W (1994) Los temblores del periodo colonial de Costa Rica. Tecnológica de Costa Rica, Cartago, 162 p (In Spanish)Google Scholar
  55. Peraldo G, Montero W (1999) Sismología histórica de América Central. Inst. Panamericano de Geogra. Historia, México, 347 p (In Spanish)Google Scholar
  56. Peraldo G, Rojas E (2000) Catálogo de deslizamientos históricos de Costa Rica, periodo 1772–1960. IGN, Semestral Report II (In Spanish)Google Scholar
  57. PNUD (Programa de las Naciones Unidas para el Desarrollo), IMN (Instituto Meteorológico Nacional), MINAET (Ministerio de Ambiente y Telecomunicaciones) (2009) Diagnostico Biofísico para Costa Rica, 478 pp (In Spanish)Google Scholar
  58. Prosser JT, Carr MJ (1987) Poás Volcano, Costa Rica: geology of the summit region and spatial and temporal variations among the most recent lavas. J Volcanol Geotherm Res 33:131–146CrossRefGoogle Scholar
  59. Rodríguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dynam Earthq Eng 18:325–346CrossRefGoogle Scholar
  60. Rojas W, Montero W, López A, Alvarado G, Vargas A, Taylor W (2009) In: RSN: ICE-UCR: Informe del terremoto de Cinchona del jueves 8 de enero de 2009. Univ de Costa Rica, San José, pp 26–44 (In Spanish)Google Scholar
  61. RSN (Red Sismológica Nacional) (UCR-ICE) (2009) El Terremoto de Cinchona del jueves 8 de enero de 2009. Rev Geol de Am Central 40:91–95 (In Spanish with English Abstract)Google Scholar
  62. Ruiz P, Gazel E, Alvarado GE, Carr MJ, Soto GJ (2010) Caracterización geoquímica y petrográfica de las unidades geológicas del macizo del volcán Poás, Costa Rica. Rev Geol Am Central 43:37–66 (In Spanish with English Abstract)Google Scholar
  63. Ruiz P, Mana S, Gazel E, Soto GJ, Carr M, Alvarado GE (Chapter 2) Geochemical and geochronological characterisation of the Poas stratovolcano stratigraphy. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  64. Schmidt V (2010) Avances para estudios del riesgo a escala regional y local: Aplicación a América Central y a la bahía de Cádiz (Sur de España). Ph.D. thesis, Univ Politécnica de Catalunya (In Spanish with English Abstract)Google Scholar
  65. Schuster RL, Nieto AS, O’ouke TD, Crespo E, Plaza-Nieto G (1996) Mass wasting triggered by the 5 March 1987 Ecuador earthquakes. Eng Geol 42:1–23Google Scholar
  66. Skinner DJ, Porter SC (1992) The dynamic earth: an introduction to physical geology, 2nd edn. Wiley, New York, p 570Google Scholar
  67. Small C, Naumann T (2001) The global distribution of human population and recent volcanism. Environ Haz 3:93–109Google Scholar
  68. Soto GJ (1994) Volcanología Física. In: Denyer P, Kussmaul S (eds) Atlas Geológico Gran Área Metropolitana. Editorial Tecnológica de Costa Rica, pp 131–146Google Scholar
  69. Soto GJ (1999) Geología Regional de la Hoja Poás (1:50 000). In: Alvarado GE, Madrigal LA (eds) Estudio Geológico-Geotécnico de Avance a la Factibilidad del P.H. Laguna Hule. Internal Report ICE, San José, pp 15–45Google Scholar
  70. Van Westen CJ, Soeters R (2000) Remote sensing and geographic information systems for natural disaster management. In: Roy PS, Van Westen J, VK, Lakhera RC, Champati RPK (eds) Natural disasters and their mitigation. A remote sensing and GIS perspective. Indian Inst Rem Sens, Nat Rem Sens Ag, India, pp 31–76Google Scholar
  71. Van Zuidam RA (1986) Aerial photointerpretation in terrain analysis and geomorphologic mapping. Smits Publishers, The Hague, 442 pGoogle Scholar
  72. Vannucchi P, Mason JP (Chapter 1) Overview of the tectonics and geodynamics of Costa Rica. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  73. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control-special report, 176, Transport Research Board, Nat Acad Sci, Washington, DC (USA), pp 11–33Google Scholar
  74. Wald DJ, Quitoriona V, Heaton TH, Kanamori H (1999) Relationship between peak ground acceleration, peak ground velocity, and modified Mercalli Intensity in California. Earthq Spectra 15:557–564CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paulo Ruiz
    • 1
    Email author
  • Michael J. Carr
    • 2
  • Guillermo E. Alvarado
    • 3
  • Gerardo J. Soto
    • 4
  • Sara Mana
    • 5
  • Mark D. Feigenson
    • 2
  • Luis F. Sáenz
    • 3
  1. 1.Laboratorio de Materiales y Modelos Estructurales de la Universidad de Costa Rica (LANAMME-UCR)San PedroCosta Rica
  2. 2.Department of Earth & Planetary SciencesRutgers UniversityNew BrunswickUSA
  3. 3.Instituto Costarricense de Electricidad (ICE)San JoseCosta Rica
  4. 4.Terra Cognita Consultants S.ASan JoseCosta Rica
  5. 5.Salem State UniversitySalemUSA

Personalised recommendations