Origins of the regulated secretory pathway

  • Alexander A. Mironov
  • Peter Arvan


Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).


Secretory Granule Secretory Pathway AtT20 Cell Golgi Cisterna Clathrin Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahras M, Otto G P, Tooze SA (2006) Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells. J Cell Biol 173(2): 241–251PubMedCrossRefGoogle Scholar
  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  3. An SJ, Almers W (2004) Tracking SNARE complex formation in live endocrine cells. Science 306: 1042–1046PubMedCrossRefGoogle Scholar
  4. Andresen JM, Moore HP (2001) Biogenesis of processing-competent secretory orgnelles in vitro. Biochemistry 40(43): 13020–13030PubMedCrossRefGoogle Scholar
  5. Anggono V, Smillie KJ, Graham ME, Valova VA, Cousin MA, Robinson PJ (2006) Syndapin I isthephosphorylation-regulateddynamin I partner in synaptic vesicle endocytosis. Nat Neurosci 9(6): 752–760PubMedCrossRefGoogle Scholar
  6. Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin-and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99(9): 6358–6363PubMedCrossRefGoogle Scholar
  7. Arvan P, Rudnick G, Castle JD (1984) Osmotic properties and internal pH of isolated rat parotid secretory granules. J Biol Chem 259: 13567–13572PubMedGoogle Scholar
  8. Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332: 593–610PubMedGoogle Scholar
  9. Arvan P, Kuliawat R, Prabakharan D, Zavacki A-M, Elahi D, Wang S, Pilkey D (1991) Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J Biol Chem 266: 14171–14174PubMedGoogle Scholar
  10. Arvan P, Zhang BY, Feng L, Liu M, Kuliawat R (2002) Lumenal protein multimerization in the distal secretory pathway/secretory granules. Curr Opin Cell Biol 14(4): 448–453PubMedCrossRefGoogle Scholar
  11. Arvan P, Halban PA (2004) Sorting ourselves out: seeking consensus on trafficking in the beta-cell. Traffic 5: 53–61PubMedCrossRefGoogle Scholar
  12. Austin CD, Shields D (1996) Prosomatostatin processing in permeabilized cells. Calcium is required for prohormone cleavage but not formation of nascent secretory vesicles. J Biol Chem 271: 1194–1199PubMedCrossRefGoogle Scholar
  13. Avery J, Ellis D, Lang T, Holroyd P, Riedel D, Henderson R, Edwardson M, Jahn R (2000) A cell-free system for regulated exocytosis in PC12 cells. J Cell Biol 148: 317–324PubMedCrossRefGoogle Scholar
  14. Banerjee A Barry VA, Bibhuti RD, Martin TFJ (1996) N-ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem 271:20223–20226PubMedCrossRefGoogle Scholar
  15. Barral DC, Ramalho JS, Anders R, Hume AN, Knapton HJ, Tolmachova T, Collinson LM, Goulding D, Authi KS, Seabra MC (2002) Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest 110: 247–257PubMedGoogle Scholar
  16. Bauerfeind R, Huttner WB (1993) Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr Opin Cell Biol 5(4): 628–635PubMedCrossRefGoogle Scholar
  17. Bell-Parikh LC, Eipper BA, Mains RE (2001) Response of an integral granule membrane protein to changes in pH. J Biol Chem 276: 29854–29863PubMedCrossRefGoogle Scholar
  18. Bendayan M, Roth J, Perrelet A, Orci L (1980) Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem 28: 149–160PubMedGoogle Scholar
  19. Bendayan M (1982) Double immunocytochemical labeling applying the protein A-gold technique. J Histochem Cytochem 30: 81–85PubMedGoogle Scholar
  20. Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M (2004) Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 279(19): 20242–20249PubMedCrossRefGoogle Scholar
  21. Blazquez M, Thiele C, Huttner WB, Docherty K, Shennan KIJ (2000) Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J 349: 843–852PubMedGoogle Scholar
  22. Blazquez M, Docherty K, Shennan KI (2001) Association of prohormone convertase 3 with membrane lipid rafts. J Mol Endocrinol 27(1): 107–116PubMedCrossRefGoogle Scholar
  23. Bock JB, Klumperman J, Davanger S, Scheller RH (1997) Syntaxin 6 functions in trans-Golgi network vesicle trafficking. Mol Biol Cell 8: 1261–1271PubMedGoogle Scholar
  24. Borgonovo B, Ouwendijk J, Solimena M (2006) Biogenesis of secretory granules. Curr Opin Cell Biol 18: 365–370PubMedCrossRefGoogle Scholar
  25. Bowman GR, Smith DG, Siu KWM, Pearlman RE, Turkewitz AP (2005) Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila. J Eukaryot Microbiol 52: 291–297PubMedCrossRefGoogle Scholar
  26. Brakch N, Allemandou F, Cavadas C, Grouzmann E, Brunner HR (2002) Dibasic cleavage site is required for sorting to the regulated secretory pathway for both pro-and neuropeptide Y. J Neurochem 81: 1166–1175PubMedCrossRefGoogle Scholar
  27. Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF (1988) A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci USA 85: 8943–8947PubMedCrossRefGoogle Scholar
  28. Castle JD, Castle AM (1996) Two regulated secretory pathways for newly synthesized parotid salivary proteins are distinguished by doses of secretagogues. J Cell Sci 109: 2591–2599PubMedGoogle Scholar
  29. Cawley NX, Rodriguez YM, Maldonado A, Loh YP (2003) Trafficking of mutant carboxypeptidase E to secretory granules in a ta-cell line derived from Cpefat/Cpefat Mice. Endocrinology 144: 292–298Google Scholar
  30. Cawley NX, Zhou J, Hill JM, Abebe D, Romboz S, Yanik T, Rodriguiz RM, Wetsel WC, Loh YP (2004) The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits. Endocrinology 145: 5807–5819PubMedCrossRefGoogle Scholar
  31. Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Pous C (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12: 2047–2060PubMedGoogle Scholar
  32. Chamberlain LH, Roth D, Morgan A, Burgoyne RD (1995) Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J Cell Biol 130(5): 1063–1070PubMedCrossRefGoogle Scholar
  33. Chamberlain LH, Henry J, Burgoyne RD (1996) Cysteine string proteins are associated with chromaffin granules. J Biol Chem 271(32): 19514–19517PubMedCrossRefGoogle Scholar
  34. Chan SJ, Seino S, Gruppuso PA, Schwartz R, Steiner DF (1987) A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. Proc Natl Acad Sci USA 84: 2194–2197PubMedCrossRefGoogle Scholar
  35. Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115(6): 1505–1519PubMedCrossRefGoogle Scholar
  36. Chavez RA, Miller SG, Moore HP (1996) A biosynthetic regulated secretory pathway in constitutive secretory cells. J Cell Biol 133(6): 1177–1191PubMedCrossRefGoogle Scholar
  37. Clermont Y, Rambourg A, Hermo L (1992) Segregation of secretory material in all elements of the Golgi apparatus in principal epithelial cells of the rat seminal vesicle. Anat Rec 232: 349–358PubMedCrossRefGoogle Scholar
  38. Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L (1993) Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of rat. Anat Rec 235: 363–373PubMedCrossRefGoogle Scholar
  39. Clermont Y, Rambourg A, Hermo L (1995) Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anat Rec 242(3): 289–301PubMedCrossRefGoogle Scholar
  40. Colomer V, Kicska GA, Rindler MJ (1996) Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem 271(1): 48–55PubMedCrossRefGoogle Scholar
  41. Cool DR, Fenger M, Snell CR, Loh YP (1995) Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J Biol Chem 270(15): 8723–8729PubMedCrossRefGoogle Scholar
  42. Cool DR, Normant E, Shen FS, Chen HC, Pannel L, Zhang Y, Loh YP (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpefat mice. Cell 88: 73–83PubMedCrossRefGoogle Scholar
  43. Coorssen JR, Blank PS, Tahara M, Zimmerberg J (1998) Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J Cell Biol 143(7): 1845–1857PubMedCrossRefGoogle Scholar
  44. Cowan AT, Bowman GR, Edwards KF, Emerson JJ, Turkewitz AP (2005) Genetic, genomic, and functional analysis of the granule lattice proteins in Tetrahymena secretory granules. Mol Biol Cell 16: 4046–4060PubMedCrossRefGoogle Scholar
  45. Cowley DJ, Moore YR, Darling DS, Joyce PB, Gorr SU (2000) N-and C-terminal domains direct cell type-specific sorting of chromogranin A to secretory granules. J Biol Chem 275: 7743–7748PubMedCrossRefGoogle Scholar
  46. Dannies PS (1999) Protein hormone storage in secretory granules: mechanisms for concentration and sorting. Endocr Rev 20(1): 3–21PubMedCrossRefGoogle Scholar
  47. Dartsch H, Kleene R, Kern HF (1998) In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur J Cell Biol 75: 211–222PubMedGoogle Scholar
  48. Day R, Gorr SU (2003) Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends Endocrinol Metab 14(2): 10–13PubMedGoogle Scholar
  49. De Lisle RC (2002) Role of sulfated O-linked glycoproteins in zymogen granule formation. J Cell Sci 115: 2941–2952PubMedGoogle Scholar
  50. De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4): 273–284PubMedCrossRefGoogle Scholar
  51. De Camili P, Jahn R (1990) Pathwaysto regulated exocytosis in neurons. Annu Rev Physiol 52:625–645CrossRefGoogle Scholar
  52. Dhanvantari S, Loh YP (2000) Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275: 29887–29893PubMedCrossRefGoogle Scholar
  53. Dhanvantari S, Shen FS, Adams T, Snell CR, Zhang C, Mackin RB, Morris SJ, Loh YP (2003) Disruption of a receptor-mediated mechanism for intracellular sorting of proinsul in in familial hyperproinsulinemia. Mol Endocrinol 17: 1856–1867PubMedCrossRefGoogle Scholar
  54. Dikeakos JD, Lacombe MJ, Mercure C, Mireuta M, Reudelhuber TL (2007a) Ahydrophobic patch in a charged alpha-helix is sufficient to target proteins to dense core secretory granules. J Biol Chem 282: 1136–1143PubMedCrossRefGoogle Scholar
  55. Dikeakos JD, Mercure C, Lacombe MJ, Seidah NG, Reudelhuber TL (2007b) PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechan ism. FEBSJ 274:4094–4102CrossRefGoogle Scholar
  56. Dittie AS, Hajibagheri N, Tooze SA (1996) TheAP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADP-ribosylation factor. J Cell Biol 132(4): 523–536PubMedCrossRefGoogle Scholar
  57. Dittie AS, Thomas L, Thomas G, Tooze SA (1997) Furin is sorted into the regulated secretory pathway in neuroendocrine cells, interacts with the AP-1 complex, and is removed during granule maturation by a casein kinase II dependent mechanism. EMBO J 16:4859–4870PubMedCrossRefGoogle Scholar
  58. Docherty K, Hutton JC, Steiner DF (1984) Cathepsin B-related proteases in the insulin secretory granule. J Biol Chem 259: 6041–6044PubMedGoogle Scholar
  59. Duncan RR, Greaves J, Wiegand UK, Matskevich I, Bodammer G, Apps DK, Shipston MJ, Chow RH (2003) Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422(6928): 176–180PubMedCrossRefGoogle Scholar
  60. Eaton BA, Haugwitz M, Lau D, Moore HP (2000) Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J Neurosci 20: 7334–7344PubMedGoogle Scholar
  61. El Meskini R, Jin L, Marx R, Bruzzaniti A, Lee J, Emeson R, Mains R (2001) A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology 142: 864–873PubMedCrossRefGoogle Scholar
  62. Emmanouilidou E, Teschemacher A, Pouli AE, Nicholls LI, Seward EP, Rutter GA (1999) Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr Biol 9(16): 915–918PubMedCrossRefGoogle Scholar
  63. Farquhar MG, Reid JJ, Daniell LW (1978) Intracellular transport and packaging of prolactin: a quantitative electron microscope autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology 102: 296–311PubMedGoogle Scholar
  64. Feliciangeli S, Kitabgi P, Bidard JN (2001) The role of dibasic residues in prohormone sorting to the regulated secretory pathway. A study with proneurotensin. J Biol Chem 276: 6140–6150PubMedCrossRefGoogle Scholar
  65. Feliciangeli S, Kitabgi P(2002) Insertion of dibasic residues directs a constitutive protein to the regulated secretory pathway. Biochem Biophys Res Commun 290: 191–196PubMedCrossRefGoogle Scholar
  66. Feng L, Arvan P (2003) The trafficking of alpha 1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 278: 31486–31494PubMedCrossRefGoogle Scholar
  67. Fontijn RD, Goud B, Echard A, Jollivet F, Van Marle J, Pannekoek H, Horrevoets AJ (2001) The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 21: 2944–2955PubMedCrossRefGoogle Scholar
  68. Fredman P, Mansson JE, Rynmark BM, Josefsen K, Ekblond A, Halldner L, Osterbye T, Horn T, Buschard K (2000) The glycosphingolipid sulfatide in the islets of Langerhans in rat pancreas is processed through recycling: possible involvement in insulin trafficking. Glycobiology 10: 39–50PubMedCrossRefGoogle Scholar
  69. Fumagalli G, Zanini A (1985) In cow anterior pituitary, growth hormone and prolactin can be packed in separate granules of the same cell. J Cell Biol 100: 2019–2024PubMedCrossRefGoogle Scholar
  70. Galas MC, Chasserot-Golaz S, Dirrig-Grosch S, Bader MF (2000) Presence of dynaminsyntaxin complexes associated with secretory granules in adrenal chromaffin cells. J Neurochem 75: 1511–1519PubMedCrossRefGoogle Scholar
  71. Garcia AL, Han SK, Janssen WG, Khaing ZZ, Ito T, Glucksman MJ, Benson DL, Salton SR (2005) A prohormone convertase cleavage site within a predicted alpha-helix mediates sorting of the neuronal and endocrine polypeptide VGF into the regulated secretory pathway. J Biol Chem 280: 41595–41608PubMedCrossRefGoogle Scholar
  72. Geuze HJ, Slot JW (1980) Disproportional immunostaining patterns of two secretory proteins in guinea pig and rat exocrine pancreatic cells. An immunoferritin and fluorescence study. Eur J Cell Biol 21: 93–100PubMedGoogle Scholar
  73. Geuze HJ, Slot JW, Tokuyasu KT (1979) Immunocytochemical localization of amylase and chymotrypsinogen in the exocrine pancreatic cell with special attention to the Golgi complex. J Cell Biol 82: 697–707PubMedCrossRefGoogle Scholar
  74. Glombik MM, Kromer, A, Salm T, Huttner WB, Gerdes HH (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18(4): 1059–1070PubMedCrossRefGoogle Scholar
  75. Glombik MM, Gerdes HH (2000) Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82: 315–326PubMedCrossRefGoogle Scholar
  76. Gomi H, Mori K, Itohara S, Izumi T (2007) Rab27b is expressed in a wide range of exocytic cells and involved in the delivery of secretory granules near the plasma membrane. Mol Biol Cell 18: 4377–4386PubMedCrossRefGoogle Scholar
  77. Gorr SU (1996) Differential storage of prolactin, granins (chromogranin B and secretogranin II), and constitutive secretory markers in rat pituitary GH4C1 cells. J Biol Chem 271:3575–3580PubMedGoogle Scholar
  78. Gorr SU, Jain RK, Kuehn U, Joyce PB, Cowley DJ (2001) Comparative sorting of neuroendocrine secretory proteins: a search for common ground in a mosaic of sorting models and mechanisms. Mol Cell Endocrinol 172: 1–6PubMedCrossRefGoogle Scholar
  79. Greider MH, Howell SL, Lacy PE (1969) Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule. J Cell Biol 41: 162–166PubMedCrossRefGoogle Scholar
  80. Gross DJ, Halban PA, Kahn CR, Weir GC, Villa-Komaroff L (1989) Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells. Proc Natl Acad Sci USA 86(11): 4107–4111PubMedCrossRefGoogle Scholar
  81. Halban PA, Irminger JC (1994) Sorting and processing of secretory proteins. Biochem J 299(Pt 1): 1–18PubMedGoogle Scholar
  82. Halban PA, Irminger JC (2003) Mutant proinsulin that cannot be converted is secreted efficiently from primary rat beta-cells via the regulated pathway. Mol Biol Cell 14: 1195–1203PubMedCrossRefGoogle Scholar
  83. Handley MT, Haynes LP, Burgoyne RD (2007) Differential dynamics of Rab3A and Rab27A on secretory granules. J Cell Sci 120: 973–984PubMedCrossRefGoogle Scholar
  84. Hannah MJ, Schmidt AA, Huttner WB (1999) Synaptic vesicle biogenesis. Annu Rev Cell Dev Biol 15:733–798PubMedCrossRefGoogle Scholar
  85. Hansen GH, Nies-Christiansen L-L, Thorsen E, Immerdal L, Danielsen EM (2000) Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J Biol Chem 275(7): 5136–5142PubMedCrossRefGoogle Scholar
  86. Harrison TM, Chidgey MA, Uff S (1996) Novel markers for constitutive secretion used to show that tissue plasminogen activator is sorted to the regulated pathway in transfected PC12 cells. Cell Biol Int 20: 293–299PubMedCrossRefGoogle Scholar
  87. Hashimoto S, Fumagalli G, Zanini A, Meldolesi J (1987) Sorting of three secretory proteins to distinct secretory granules in acidophilic cells of cow anterior pituitary. J Cell Biol 105(4): 1579–1586PubMedCrossRefGoogle Scholar
  88. Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R, Day R, Karaplis AC, Tremblay ML, Canaff L (2006) Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20(8): 1935–1947PubMedCrossRefGoogle Scholar
  89. Henomatsu N, Yoshimori T, Yamamoto A, Moriyama Y, Tashiro Y (1993) Inhibition of intracellular transport of newly synthesized prolactin by bafilomycin A1 in a pituitary tumor cell line, GH3 cells. Eur J Cell Biol 62(1): 127–139PubMedGoogle Scholar
  90. Hinners I, Wendler F, Fei H, Thomas L, Thomas G, Tooze SA (2003) AP-1 recruitment to VAMP4 is modulated by phosphorylation-dependent binding of PACS-1. EMBO Rep 4:1–8CrossRefGoogle Scholar
  91. Honore B, Vorum H (2000) The CREC family, a novel family of multiple EF-hand, lowaffinity Ca2+-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett 466(1): 11–18PubMedCrossRefGoogle Scholar
  92. Hosaka M, Watanabe T, Sakai Y, Uchiyama Y, Takeuchi T (2002) dentification of a chromogranin Adomain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Mol Biol Cell 13(10): 3388–3399PubMedCrossRefGoogle Scholar
  93. Hosaka M, Suda M, Sakai Y, Izumi T, Watanabe T, Takeuchi T (2004) Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J Biol Chem 279: 3627–3634PubMedCrossRefGoogle Scholar
  94. Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T (2005) Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 118: 4785–4795PubMedCrossRefGoogle Scholar
  95. Huang IF, Arvan P (1994) Formation of the insulin-containing secretory granule core occurs within immature beta-granules. J Biol Chem 269: 20838–20844PubMedGoogle Scholar
  96. Huang XF, Arvan P (1995) Intracellular transport of proinsulin in pancreatic beta-cells. Structural maturation probed by disulfide accessibility. J Biol Chem 270(35): 20417–20423PubMedCrossRefGoogle Scholar
  97. Huang AY, Castle AM, Hinton BT, Castle JD (2001) Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J Biol Chem 276: 22296–22306PubMedCrossRefGoogle Scholar
  98. Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory graule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278(42): 40581–40589PubMedCrossRefGoogle Scholar
  99. Hui N, Nakamura N, Sonnichsen B, Shima DT, Nilsson T, Warren G (1997) An isoform of the Golgi t-SNARE, syntaxin 5, with an endoplasmic reticulum retrieval signal. Mol Biol Cell 8(9): 1777–1787PubMedGoogle Scholar
  100. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13(4): 470–477PubMedCrossRefGoogle Scholar
  101. Imai A, Yoshie S, Nashida T, Shimomura H, Fukuda M (2004) The small GTPase Rab27B regulates amylase release from rat parotid acinar cells. J Cell Sci 117: 1945–1953PubMedCrossRefGoogle Scholar
  102. Irminger JC, Verchere CB, Meyer K, Halban PA (1997) Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J Biol Chem 272(44): 27532–27534PubMedCrossRefGoogle Scholar
  103. Jain RK, Joyce PB, Gorr SU (2000) Aggregation chaperones enhance aggregation and storage of secretory proteins in endocrine cells. J Biol Chem 275(35): 27032–27036PubMedGoogle Scholar
  104. Jain RK, Joyce PB, Molinete M, Halban PA, Gorr SU (2001) Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J 360: 645–649PubMedCrossRefGoogle Scholar
  105. Johns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D (2001) Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 153: 177–190PubMedCrossRefGoogle Scholar
  106. Kaether C, Salm T, Glombik M, Almers W, Gerdes H-H (1997) Targeting of green fluorescent protein to neuroendocrine secretory granules: a newtool for real time studies of regulated protein secretion. Eur J Cell Biol 74: 133–142PubMedGoogle Scholar
  107. Kakhlon O, Sakya P, Larijani B, Watson R, Tooze SA (2006) GGA function is required for maturation of neuroendocrine secretory granules. EMBO J 25: 1590–1602PubMedCrossRefGoogle Scholar
  108. Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T, Kasai H, Nagamatsu S, Gomi H, Izumi T (2005) Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 115: 388–396PubMedGoogle Scholar
  109. Kelly RB, Buckley KM, Burgess TL, Carlson SS, Caroni P, Hooper JE, Katzen A, Moore HP, Pfeffer SR, Schroer TA (1983) Membrane traffic in neurons and peptide-secreting cells. Cold Spring Harbor Symp Quant Biol 48(Pt2): 697–705PubMedGoogle Scholar
  110. Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106(4): 499–509PubMedCrossRefGoogle Scholar
  111. Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2003) The role of chromogranin A and the control of secretory granule genesis and maturation. Trends Endocrinol Metab 14(2): 56–57PubMedCrossRefGoogle Scholar
  112. Kingsley DM, Rinchik EM, Russell LB, Ottiger H-P, Sutcliffe JG, Copeland NG, Jenkins NA (1990) Genetic ablation of a mouse gene expressed specifically in brain. EMBO J 9(2): 395–399PubMedGoogle Scholar
  113. Kleene R, Kastner B, Rosser R, Kern H (1999) Complex formation among rat pancreatic secretory proteins under mild alkaline pH conditions. Digestion 60(4): 305–313PubMedCrossRefGoogle Scholar
  114. Klumperman J, Spijker S, Van Minnen J, Sharp-Baker H, Smit AB, Geraerts WPM (1996) Cell type-specific sorting of neuropeptides: a mechanism to modulate peptide composition of large dense-core vesicles. J Neurosci 16(24): 7930–7940PubMedGoogle Scholar
  115. Klumperman J, Kuliawat R, Griffith JM, Geuze HJ, Arvan P (1998) Mannose6-phosphate receptors are sorted from immature secretory granules via AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 141: 359–371PubMedCrossRefGoogle Scholar
  116. Krömer A, Glombik MM, Huttner WB, Gerdes HH (1998) Essential role of the disulfidebonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140(6): 1331–1346PubMedCrossRefGoogle Scholar
  117. Kuliawat R, Arvan P (1992) Protein targeting via the ‘constitutive-like’ secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J Cell Biol 118: 521–529PubMedCrossRefGoogle Scholar
  118. Kuliawat R, Arvan P (1994) Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic β-cells. J Cell Biol 126: 77–86PubMedCrossRefGoogle Scholar
  119. Kuliawat R, Klumperman J, Ludwig T, Arvan P (1997) Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic beta-cells. J Cell Biol 137: 595–608PubMedCrossRefGoogle Scholar
  120. Kuliawat R, Prabakaran D, Arvan P (2000) Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell 11: 1959–1972PubMedGoogle Scholar
  121. Kuliawat R, Kalinina E, Bock J, Fricker L, McGraw TE, Kim SR, Zhong J, Scheller R, Arvan P (2004) Syntaxin-6 SNARE involvement in secretory and endocytic pathways of cultured pancreatic β-cells. Mol Biol Cell 15(4): 1690–1701PubMedCrossRefGoogle Scholar
  122. Lacombe MJ, Mercure C, Dikeakos JD, Reudelhuber TL (2005) Modulation of secretory granule-targeting efficiency by cis and trans compounding of sorting signals. J Biol Chem 280: 4803–4807PubMedCrossRefGoogle Scholar
  123. Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell K (2002) Structure of the Golgi and distribution of reporter molecules at 20°C reveals the complexity of the exit compartments. Mol Biol Cell 13: 2810–2825PubMedCrossRefGoogle Scholar
  124. Lane J, Allan V (1998) Microtubule-based membrane movement. Biochim Biophys Acta 1376(1): 27–55PubMedGoogle Scholar
  125. Laine J, Lebel D (1999) Efficient binding of regulated secretory protein aggregates to membrane phospholipids at acidic pH. Biochem J 338: 289–294PubMedCrossRefGoogle Scholar
  126. Lara-Lemus R, Liu M, Turner MD, Scherer P, Stenbeck G, Iyengar P, Arvan P (2006) Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. J Cell Sci 119: 1833–1842PubMedCrossRefGoogle Scholar
  127. Lee MS, Zhu YL, Chang JE, Dannies PS (2001) Acquisition of Lubrol insolubility, a common step for growth hormone and prolactin in the secretory pathway of neuroendocrine cells. J Biol Chem 276: 715–721PubMedCrossRefGoogle Scholar
  128. Lee CS, Kim IS, Park JB, Lee MN, Lee HY, Suh PG, Ryu SH (2006) The phox homology domain of phospholipaseD activates dynamin GTPase activity and accelerates EGFR endocytosis. Nat Cell Biol 8(5): 477–484PubMedCrossRefGoogle Scholar
  129. Leung YM, Sheu L, Kwan E, Wang G, Tsushima R, Gaisano H (2002) Visualization of sequential exocytosis in rat pancreatic islet beta cells. Biochem Biophys Res Commun 292(9): 980–986PubMedCrossRefGoogle Scholar
  130. Liu M, Ramos-Castaneda J, Arvan P (2003) Role of the connecting peptide in insulin biosynthesis. J Biol Chem 278: 14798–14805PubMedCrossRefGoogle Scholar
  131. Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, Scalettar BA (1998) Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9: 2463–2476PubMedGoogle Scholar
  132. Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, Loh YP (2005) Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase E. Neuron 45: 245–255PubMedCrossRefGoogle Scholar
  133. Lou H, Smith AM, Coates LC, Cawley NX, Loh YP, Birch NP (2007) The transmembrane domain of the prohormone convertase PC3: a key motif for targeting to the regulated secretory pathway. Mol Cell Endocrinol 267: 17–25PubMedCrossRefGoogle Scholar
  134. Lui-Roberts WW, Collinson LM, Hewlett LJ, Michaux G, Cutler DF (2005) An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells. J Cell Biol 170: 627–636PubMedCrossRefGoogle Scholar
  135. Martin TFJ, Kowalchyk JA (1997) Docked secretory vesicles undergo Ca2+-activated exocytosis in a cell-free system. J Biol Chem 272: 14447–14453PubMedCrossRefGoogle Scholar
  136. Martin TF (2003) Tuning exocytosis for speed: fast and slow modes. Biochim Biophys Acta 1641: 157–165PubMedCrossRefGoogle Scholar
  137. Martínez-Menarguez JA, Geuze HJ, Slot JW, Klumperman J (1999) Vesicular tubular clusters (VTCs) between ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98: 81–90PubMedCrossRefGoogle Scholar
  138. Matsumoto M, Miki T, Shibasaki T, Kawaguchi M, Shinozaki H, Nio J, Saraya A, Koseki H, Miyazaki M, Iwanaga T, Seino S (2004) Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc Natl Acad Sci USA 101: 8313–8318PubMedCrossRefGoogle Scholar
  139. Meldolesi J, Chieregatti E, Luisa Malosio ML (2004) Requirements for the identification of dense-core granules. Trends Cell Biol 14: 13–19PubMedCrossRefGoogle Scholar
  140. Michaux G, Hewlett LJ, Messenger SL, Goodeve AC, Peake IR, Daly ME, Cutler DF (2003) Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor. Blood 102: 2452–2458PubMedCrossRefGoogle Scholar
  141. Millar CA, Meerloo T, Martin S, Hickson GRX, Shimwell NJ, Wakelam MJO, James DE, Gould GW (2000) Adipsin and the glucose transporter GLUT4 traffic to the cell surface via independent pathways in adipocytes. Traffic 1(2): 141–151PubMedCrossRefGoogle Scholar
  142. Mizuno K, Tolmachova T, Ushakov DS, Romao M, Abrink M, Ferenczi MA, Raposo G, Seabra MC (2007) Rab27b regulates mast cell granule dynamics and secretion. Traffic 8: 883–892PubMedCrossRefGoogle Scholar
  143. Molinete M, Lilla V, Jain R, Joyce PBM, Gorr S-U, Ravazzola M, Halban PQ (2000) Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia 43: 1157–1164PubMedCrossRefGoogle Scholar
  144. Molinete M, Dupuis S, Brodsky FM, Halban PA (2001) Role of clathrin in the regulated secretory pathway of pancreatic beta-cells. J Cell Sci 114: 3059–3066PubMedGoogle Scholar
  145. Mulcahy LR, Vaslet CA, Nillni EA (2005) Prohormone-convertase 1 processing enhances post-Golgi sorting of prothyrotropin-releasing hormone-derived peptides. J Biol Chem 280: 39818–39826PubMedCrossRefGoogle Scholar
  146. Natori S, Huttner WB (1996) Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci USA 93(9): 4431–4436PubMedCrossRefGoogle Scholar
  147. Neerman-Arbez M, Halban PA (1993) Novel, non-crinophagic, degradation of connecting peptide in transformed pancreatic beta cells. J Biol Chem 268(22): 16248–16252PubMedGoogle Scholar
  148. Nemoto Y, Wenk MR, Watanabe M, Daniell L, Murakami T, Ringstad N, Yamada H, Takei K, De Camilli P (2001) Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem 276(44): 41133–41142PubMedCrossRefGoogle Scholar
  149. Nguyen TT, Ong H, De Lean A (1988) Secretion and biosynthesis of atrial natriuretic factor by cultured adrenal chromaffin cells. FEBS Lett 231: 393–396PubMedCrossRefGoogle Scholar
  150. Normant E, Loh YP (1998) Depletion of carboxypeptidase E, a regulated secretory pathway sorting receptor, causes misrouting and constitutive secretion of proinsulin and proenkephalin, but not chromogranin A. Endocrinology 139(4): 2137–2145PubMedCrossRefGoogle Scholar
  151. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94(26): 14730–14735PubMedCrossRefGoogle Scholar
  152. Oprins A, Rabouille C, Posthuma G, Klumperman J, Geuze HJ, Slot JW (2001) The ER to Golgi interface is the major concentration site of secretory proteins in the exocrine pancreatic cell. Traffic 2: 831–838PubMedCrossRefGoogle Scholar
  153. Orci L, Ravazzola M, Perrelet A (1984a) Proinsulin associates with Golgi membranes of pancreatic B cells. Proc Natl Acad Sci USA 81: 6743–6746PubMedCrossRefGoogle Scholar
  154. Orci L, Halban P, Amherdt M, Ravazzola M, Vassalli J-D, Perrelet A (1984b) A clathrincoated, Golgi-related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensin. Cell 39: 39–47PubMedCrossRefGoogle Scholar
  155. Orci L (1985) The insulin factory. a tour of the plant surroundings and a visit to the assembly line. Diabetologia 28: 528–546PubMedCrossRefGoogle Scholar
  156. Orci L, Ravazzola M, Amherdt M, Madsen O, Perrelet A, Vassalli JD, Anderson RGW (1986) Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol 103: 2273–2281PubMedCrossRefGoogle Scholar
  157. Orci L, Ravazzola M, Storch MJ, Anderson RG, Vassalli JD, Perrelet A (1987a) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49(6): 865–868PubMedCrossRefGoogle Scholar
  158. Orci L, Ravazzola M, Amherdt M, Perrelet A, Powell SK, Quinn DL, Moore H-PH (1987b) The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory an plasma membrane proteins. Cell 51(6): 1039–1051PubMedCrossRefGoogle Scholar
  159. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90(2): 335–349PubMedCrossRefGoogle Scholar
  160. Osterbye T, Jorgensen KH, Fredman P, Tranum-Jensen J, Kaas A, Brange J, Whittingham JL, Buschard K (2001) Sulfatide promotes the folding of proinsulin, preserves insulin crystals, and mediates its monomerization. Glycobiology 11: 473–479PubMedCrossRefGoogle Scholar
  161. Polishchuk RS, Mironov AA (2004) Structural aspects of Golgi function. Cell Mol Life Sci 61(2): 146–158PubMedCrossRefGoogle Scholar
  162. Posthuma G, Slot JW, Geuze HJ (1988) Immunogold determination of amylase concentrations in pancreatic subcellular compartments. Eur J Cell Biol 46: 327–335PubMedGoogle Scholar
  163. Powell SK, Orci L, Craik CS, Moore HPH (1988) Efficient targeting to storage granules of human proinsulins with altered propeptide domain. J Cell Biol 106: 1843–1851PubMedCrossRefGoogle Scholar
  164. Rambourg A, Segretain D, Clermont Y (1984) Tridimensional architecture of the Golgi apparatus in the atrial muscle cell of the rat. Am J Anat 170: 163–179PubMedCrossRefGoogle Scholar
  165. Rambourg A, Clermont Y, Chretien M, Olivier L (1992) Formation of secretory granules in the Golgi apparatus of prolactin cells in the rat pituitary gland: a stereoscopic study. Anat Rec 232: 169–179PubMedCrossRefGoogle Scholar
  166. Rambourg A, Clermont Y, Chretien M, Olivier L (1993) Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat Rec 235(3): 353–362PubMedCrossRefGoogle Scholar
  167. Rambourg A, Jackson CL, Clermont Y (2001) Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae. J Cell Sci 114(Pt 12): 2231–2239PubMedGoogle Scholar
  168. Regazzi R, Sadoul K, Meda P, Kelly RB, Halban PA, Wollheim CB (1996) Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis. EMBO J 15:6951–6959PubMedGoogle Scholar
  169. Rhodes CJ, Halban PA (1987) Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than constitutive, pathway. J Cell Biol 105: 145–153PubMedCrossRefGoogle Scholar
  170. Rindler MJ (1998) Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem 273(47): 31180–31185PubMedCrossRefGoogle Scholar
  171. Rindler MJ, Colomer V, Jin Y (2001) Immature granules are not major sites for segregation of constitutively secreted granule content proteins in NIT-1 insulinoma cells. Biochem Biophys Res Commun 288: 1071–1077PubMedCrossRefGoogle Scholar
  172. Robinson LJ, Martin TFJ (1998) Docking and fusion inneurosecretion. Curr Opin Cell Biol 10:483–492PubMedCrossRefGoogle Scholar
  173. Rudolf R, Salm T, Rustom A, Gerdes H H (2001) Dynam ics of immature secretory granu les: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12(5): 1353–1365PubMedGoogle Scholar
  174. Rustom A, Bajohrs M, Kaether C, Keller P, Toomre D, Corbeil D, Gerdes HH (2002) Selective delivery of secretory cargo in Golgi-derived carriers of nonepithelial cells. Traffic 3: 279–288PubMedCrossRefGoogle Scholar
  175. Rutter GA, Tsuboi T (2004) Kiss and run exocytosis of dense core secretory vesicles. Neuroreport 15(1): 79–81PubMedCrossRefGoogle Scholar
  176. Salamero J, Sztul E, Howell K (1990) Exocytic transport vesicles generated in vitro from the trans-Golgi network carry secretory and plasma membrane proteins. Proc Natl Acad Sci USA 87(19): 7717–7721PubMedCrossRefGoogle Scholar
  177. Schlegel A, Arvan P, Lisanti MP (2001) Caveolin-1 binding to endoplasmic reticulum (ER) membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the ER. J Biol Chem 276: 4398–4408PubMedCrossRefGoogle Scholar
  178. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66: 511–548PubMedCrossRefGoogle Scholar
  179. Scherer PE, Lederkremer GZ, WilliamsS, Fogliano M, Baldini M, Lodish HF (1996) Cab45, a novel (Ca2+)-binding protein localized to the Golgi lumen. J Cell Biol 133(2): 257–268PubMedCrossRefGoogle Scholar
  180. Schoonderwoert VT, Holthuis JC, Tanaka S, Tooze SA, Martens GJ (2000) Inhibition of the vacuolar H +-ATPase perturbs the transport, sorting, processing and release of regulated secretory proteins. Eur J Biochem 267(17): 5646–5654PubMedCrossRefGoogle Scholar
  181. Seeger M, Payne G (1992) Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J Cell Biol 118(3): 531–540PubMedCrossRefGoogle Scholar
  182. Sesso A, Assis JE, Kuwajima VY, Kachar B (1980) Freeze-fracture and thin-section study of condensing vacuoles in rat pancreatic acinar cells. Acta Anat 108: 521–539PubMedCrossRefGoogle Scholar
  183. Shennan KI (1996) Intracellular targeting of secretory proteins in neuroendocrine cells. Biochem Soc Trans 24: 535–539PubMedGoogle Scholar
  184. Slot JW, Geuze HJ (1983) Immunoelectron microscopic exploration of the Golgi complex. J Histochem Cytochem 31: 1049–1056PubMedGoogle Scholar
  185. Slot JW, Garutti G, Martin S, Oorschot V, Posthuma G, Kraegen EW, Laybutt R, Thibault G, James DE (1997) Glucose transporter (GLUT-4) is targeted to secretory granules in rat atrial cardiomyocytes. J Cell Biol 137: 1243–1254PubMedCrossRefGoogle Scholar
  186. Sollner TH (2003) Regulated exocytosis and SNARE function. Mol Membr Biol 20: 209–220PubMedCrossRefGoogle Scholar
  187. Song L, Fricker LD (1995) Calcium-andpH-dependentaggregationofcarboxypeptidase E. J Biol Chem 270(14): 7963–7967PubMedCrossRefGoogle Scholar
  188. Sírensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448(4): 347–362Google Scholar
  189. Sossin WS, Fisher JM, Scheller RH (1990) Sorting within the regulated secretory pathway occurs in the trans-Golgi network. J Cell Biol 110: 1–12PubMedCrossRefGoogle Scholar
  190. Soulet F, Yarar D, Leonard M, Schmid SL (2005) SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 16(4): 2058–2067PubMedCrossRefGoogle Scholar
  191. Stahl LE, Wright RL, Castle JD, Castle AM (1996) The unique proline-rich domain of parotid proline-rich proteins functions in secretory sorting. J Cell Sci 109: 1637–1645PubMedGoogle Scholar
  192. Steegmaier M, Klumperman J, Foletti DL, Yoo JS, Scheller RH (1999) Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol Biol Cell 10: 1957–1972PubMedGoogle Scholar
  193. Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2(2): 31–39PubMedCrossRefGoogle Scholar
  194. Stojilkovic SS (2005) Ca2+-regulated exocytosis and SNARE function. Trends Endocrinol Metabol 16(3): 81–83CrossRefGoogle Scholar
  195. Stoller TJ, Shields D (1989) The propeptideof preprosomatostatin mediates intracellular transport and secretion of alpha-globin from mammalian cells. J Cell Biol 108(5): 1647–1655PubMedCrossRefGoogle Scholar
  196. Tamaki H, Yamashina S (2002) Structural integrity of the Golgi stack is essential for normal secretory functions of rat parotid acinar cells: effects of brefeldin A and okadaic acid. J Histochem Cytochem 50: 1611–1623PubMedGoogle Scholar
  197. Tanaka S, Yora T, Nakayama K, Inoue K, Kurosumu K (1997) Proteolytic processing of pro-opiomelanocortin occurs in acidifying secretory granules of AtT-20 cells. J Histochem Cytochem 45: 425–436PubMedGoogle Scholar
  198. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100: 2070–2075PubMedCrossRefGoogle Scholar
  199. Taupenot L, Harper KL, Mahapatra NR, Parmer RJ, O’Connor DT (2002a) Intracellular protein trafficking into catecholamine storage vesicles: novel chimeric photoproteins visualized by deconvolution fluorescence microscopy. Ann NY Acad Sci 971: 262–265PubMedCrossRefGoogle Scholar
  200. Taupenot L, Harper KL, Mahapatra NR, Parmer RJ, Mahata SK, O’Connor DT (2002b) Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 115: 4827–4841PubMedCrossRefGoogle Scholar
  201. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretograninfamily. N Engl J Med 348: 1134–1149PubMedCrossRefGoogle Scholar
  202. Taupenot L, Harper KL, O’Connor DT (2005) Role of H +-ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function. J Biol Chem 280(5): 3885–3897PubMedCrossRefGoogle Scholar
  203. Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, Zhao X, Lukyanov S, Matz M, Kim S, Weissman I, Siebert P (2000) Fluorescent timer: protein that changes color with time. Science 290(5496): 1585–1588PubMedCrossRefGoogle Scholar
  204. Thiele C, Gerdes HH, Huttner WB (1997) Protein secretion: puzzling receptors. Curr Biol 7(8): R496–R500PubMedCrossRefGoogle Scholar
  205. Thorn P, Fogarty KE, Parker I (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci USA 101(17): 6774–6779PubMedCrossRefGoogle Scholar
  206. Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH (2003) Afunctional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem 278(50): 49699–49706PubMedCrossRefGoogle Scholar
  207. Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC (2007) Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci USA 104(4): 5872–5877PubMedCrossRefGoogle Scholar
  208. Tooze J, Tooze SA (1986) Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. J Cell Biol 103: 839–850PubMedCrossRefGoogle Scholar
  209. Tooze J, Hollinshead M, Frank R, Burke B (1987) An antibody specific for an endoproteolytic cleavage site provides evidence that pro-opiomelanocortin is packaged into secretory granules in AtT20 cells before its cleavage. J Cell Biol 105: 155–162PubMedCrossRefGoogle Scholar
  210. Tooze J, Tooze SA, Fuller SD (1987) Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT2O cells. J Cell Biol 105: 1215–1226PubMedCrossRefGoogle Scholar
  211. Tooze SA, Huttner WB (1990) Cel l-f ree protein sorting to the regu lated and constitutive secretory pathways. Cell 60: 837–847PubMedCrossRefGoogle Scholar
  212. Tooze S, Flatmark T, Tooze J, Huttner WB (1991) Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol 115(6): 1491–1503PubMedCrossRefGoogle Scholar
  213. Tooze S, Martens GJM, Huttner WB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11(3): 116–122PubMedCrossRefGoogle Scholar
  214. Trifaró J-M, Vitale ML (1993) Cytoskeleton dynamics during neurotransmitter release. Trends Neurobiol Sci 16: 466–472CrossRefGoogle Scholar
  215. Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6(11): 1071–1081PubMedCrossRefGoogle Scholar
  216. Tsuboi T, Rutter GA (2003) Multiple forms of ‘kiss-and-run’ exocytosis revealed by evanescent wave microscopy. Curr Biol 13(7): 563–567PubMedCrossRefGoogle Scholar
  217. Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following ‘kiss-and-run’ (‘cavicapture’) exocytosis in insulin-secreting cells. J Biol Chem 279(45): 47115–47124PubMedCrossRefGoogle Scholar
  218. Tsuboi T, Ravier MA, Parton LE, Rutter GA (2006) Sustained exposure to high glucose concentrations modifies glucose signaling and the mechanics of secretory vesicle fusion in primary rat pancreatic β-cells. Diabetes 55(4): 1057–1065PubMedCrossRefGoogle Scholar
  219. Tsuboi T, Fukuda M (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci 119: 2196–2203PubMedCrossRefGoogle Scholar
  220. Turner MD, Arvan P (2000) Protein traffic from the secretory pathway to the endosomal system in pancreatic b-cells. J Biol Chem 275: 14025–14030PubMedCrossRefGoogle Scholar
  221. Urbe S, Tooze SA, Barr FA (1997a) Formation of secretory vesicles in the biosynthetic pathway. Biochim Biophys Acta 1358(1): 6–22PubMedCrossRefGoogle Scholar
  222. Urbe S, Dittie AS, Tooze SA (1997b) pH-dependent processing of secretogranin II by the endopeptidase PC2 in isolated immature secretory granules. Biochem J 321 (Pt 1): 65–74PubMedGoogle Scholar
  223. Urbe S, Page LJ, Tooze SA (1998) Homotypic fusion of immature secretory granules during maturation in a cell-free assay. J Cell Biol 143: 1831–1844PubMedCrossRefGoogle Scholar
  224. Varadi A, Ainscow EK, Allan VJ, Rutter GA (2002) Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic b-cells. J Cell Sci 115(Pt 21): 4177–4189PubMedCrossRefGoogle Scholar
  225. Varlamov O, Fricker LD, Furukawa H, Steiner DF, Langley SH, Leiter EH (1997) Beta-cell lines derived from transgenic Cpe(fat)/Cpe(fat) mice are defective in carboxypeptidase E and proinsulin processing. Endocrinology 138: 4883–4892PubMedCrossRefGoogle Scholar
  226. Velasco A, Hendricks L, Moreman KW, Tulsiani DRP, Touster O, Farquhar MG (1993) Celltype dependent variations in the subcellular distribution of a-mannosidase I and II. J Cell Biol 122:39–51PubMedCrossRefGoogle Scholar
  227. Venkatesh SG, Gorr SU (2002) A sulfated proteoglycan is necessary for storage of exocrine secretory proteins in the rat parotid gland. Am J Physiol Cell Physiol 283: C438–C445PubMedGoogle Scholar
  228. Venkatesh SG, Cowley DJ, Gorr SU (2004) Differential aggregation properties of secretory proteins that are stored in exocrine secretory granules of the pancreas and parotid glands. Am J Physiol Cell Physiol 286(2): C365–C371PubMedCrossRefGoogle Scholar
  229. Von Zastrow M, Castle JD (1987) Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol 105: 2675–2684CrossRefGoogle Scholar
  230. Wacker I, Kaether C, Kromer A, Migala A, Almers W, Gerdes HH (1997) Microtubule-dependent transport of secretory vesicles visua l ized in rea l time with a G FP-tagged secretory protein. J Cell Sci 110(Pt 13): 1453–1463PubMedGoogle Scholar
  231. Wang Y, Thiele C, Huttner WB (2000) Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network. Traffic 1: 952–962PubMedCrossRefGoogle Scholar
  232. Wasmeier C, Hutton JC (1996) Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem 271:18161–18170PubMedCrossRefGoogle Scholar
  233. Wasmeier C, Bright NA, Hutton JC (2002) The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules. Traffic 3(9): 654–665PubMedCrossRefGoogle Scholar
  234. Wendler F, Page L, Urbe S, Tooze SA (2001) Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 12: 1699–1709PubMedGoogle Scholar
  235. Wheeler MB, Sheu L, Ghai M, Bouquillon A, Grondin G, Weller U, Beaudoin AR, Bennett MK, Trimble WS, Gaisano H (1996) Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinology 137: 1340–1348PubMedCrossRefGoogle Scholar
  236. Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5(11): 1803–1823PubMedCrossRefGoogle Scholar
  237. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49(3): 497–528PubMedCrossRefGoogle Scholar
  238. Wiser O, Trus M, Hernandez A, Renstrom E, Barg S, Rorsman P, Atlas D (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA 96(1): 248–253PubMedCrossRefGoogle Scholar
  239. Wu MM, Grabe M, Adams S, Tsien RY, Moore HP, Machen TE (2001) Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem 276: 33027–33035PubMedCrossRefGoogle Scholar
  240. Xu H, Shields D (1994) Prosomatostatin processing in permeabilized cells. J Biol Chem 269:22875–22881PubMedGoogle Scholar
  241. Yoo SH, Lewis MS (1992) Effects of pH and Ca2+ on monomer-dimerand monomer-tetramer equilibria of chromogranin A. J Biol Chem 267(16): 11236–11241PubMedGoogle Scholar
  242. Yoo SH (1996) pH-and Ca(2+ )-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromograninsAand B in secretory vesicle biogenesis. J Biol Chem 271(3): 1558–1565PubMedGoogle Scholar
  243. Yoo SH (2000) Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci 23(9): 424–428PubMedCrossRefGoogle Scholar
  244. Yoo S, Oh Y, Kang M, Huh Y, So S, Park H, Park H (2001) Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B. J Biol Chem 276(49): 45806–45812PubMedCrossRefGoogle Scholar
  245. Zenner HL, Collinson LM, Michaux G, Cutler DF (2007) High-pressure freezing provides insights into Weibel-Palade body biogenesis. J Cell Sci 120(Pt12): 2117–2125PubMedCrossRefGoogle Scholar
  246. Zhang B-Z, Chang A, Kjeldsen TB, Arvan P (2001) Intracellular retention of newlysynthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 153: 1187–1197PubMedCrossRefGoogle Scholar
  247. Zhao S, Torii S, Yokota-Hashimoto H, Takeuchi T, Izumi T (2002) Involvement of Rab27b in the regulated secretion of pituitary hormones. Endocrinology 143(5): 1817–1824PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • Alexander A. Mironov
    • 1
  • Peter Arvan
    • 2
  1. 1.Laboratory of Intracellular Traffic Department of Cell Biology and OncologyConsorzio Mario Negri SudS. Maria Imbaro (Chieti)Italy
  2. 2.Division of Metabolism, Endocrinology & DiabetesUniversity of Michigan Medical CenterAnn ArborUSA

Personalised recommendations