Advertisement

Protein-protein interactions: analysis and prediction

  • D. FrishmanEmail author
  • M. Albrecht
  • H. Blankenburg
  • P. Bork
  • E. D. Harrington
  • H. Hermjakob
  • L. Juhl Jensen
  • D. A. Juan
  • T. Lengauer
  • P. Pagel
  • V. Schachter
  • A. Valencia
Chapter

Abstract

Proteins represent the tools and appliances of the cell — they assemble into larger structural elements, catalyze the biochemical reactions of metabolism, transmit signals, move cargo across membrane boundaries and carry out many other tasks. For most of these functions proteins cannot act in isolation but require close cooperation with other proteins to accomplish their task. Often, this collaborative action implies physical interaction of the proteins involved. Accordingly, experimental detection, in silico prediction and computational analysis of protein-protein interactions (PPI) have attracted great attention in the quest for discovering functional links among proteins and deciphering the complex networks of the cell.

Keywords

Protein Interaction Protein Interaction Network Binary Interaction Domain Pair Protein Interaction Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abagyan R, Totrov M, Kuznetsov D (1994) ICM-a method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15: 488–506CrossRefGoogle Scholar
  2. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24: 537–544PubMedCrossRefGoogle Scholar
  3. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118: 4947–4957PubMedCrossRefGoogle Scholar
  4. Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332: 989–998PubMedCrossRefGoogle Scholar
  5. Aloy P, Russell RB (2004) Ten thousand interactions for the molecular biologist. Nat Biotechnol 22: 1317–1321PubMedCrossRefGoogle Scholar
  6. Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7: 188–197PubMedCrossRefGoogle Scholar
  7. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32: D226–D229PubMedCrossRefGoogle Scholar
  8. Apic G, Gough J, Teichmann SA (2001) Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol 310: 311–325PubMedCrossRefGoogle Scholar
  9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29PubMedCrossRefGoogle Scholar
  10. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24: 282–284PubMedCrossRefGoogle Scholar
  11. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular interaction network database. Nucleic Acids Res 31: 248–250PubMedCrossRefGoogle Scholar
  12. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5: 101–113PubMedCrossRefGoogle Scholar
  13. Barker D, Meade A, Pagel M (2007) Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23: 14–20PubMedCrossRefGoogle Scholar
  14. Barker D, Pagel M (2005) Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS Comput Biol 1: e3PubMedCrossRefGoogle Scholar
  15. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307: 1621–1625PubMedCrossRefGoogle Scholar
  16. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35: D301–D303PubMedCrossRefGoogle Scholar
  17. Bock JR, Gough DA (2001) Predicting protein-protein interactions from primary structure. Bioinformatics 17: 455–460PubMedCrossRefGoogle Scholar
  18. Bodenreider O (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res 32: D267–D270PubMedCrossRefGoogle Scholar
  19. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (2004) A physical and functional map of the human TNF-alpha/ NF-kappa B signal transduction pathway. Nat Cell Biol 6: 97–105PubMedCrossRefGoogle Scholar
  20. Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004) Use of logic relationships to decipher protein network organization. Science 306: 2246–2249PubMedCrossRefGoogle Scholar
  21. Breitkreutz BJ, Stark C, Tyers M (2003) The GRID: the General Repository for Interaction Datasets. Genome Biol 4: R23PubMedCrossRefGoogle Scholar
  22. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433: 531–537PubMedCrossRefGoogle Scholar
  23. Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, Ewence AE, Li N, Hirozane-Kishikawa T, Hill DE, Vidal M, Kieff E, Johannsen E (2007) Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA 104: 7606–7611PubMedCrossRefGoogle Scholar
  24. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437: 1032–1037PubMedCrossRefGoogle Scholar
  25. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ, Brandon NJ (2006) Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 12: 74–86PubMedCrossRefGoogle Scholar
  26. Carlson HA (2002) Protein flexibility is an important component of structure-based drug discovery. Curr Pharm Des 8: 1571–1578PubMedCrossRefGoogle Scholar
  27. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35: D572–D574PubMedCrossRefGoogle Scholar
  28. Chen H, Lyne PD, Giordanetto F, Lovell T, Li J (2006) On evaluating molecular-docking methods for pose prediction and enrichment factors. J Chem Inf Model 46: 401–415PubMedCrossRefGoogle Scholar
  29. Chen XW, Liu M (2005) Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21: 4394–4400PubMedCrossRefGoogle Scholar
  30. Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22: 416–419PubMedCrossRefGoogle Scholar
  31. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140PubMedCrossRefGoogle Scholar
  32. Claußen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308: 377–395PubMedCrossRefGoogle Scholar
  33. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2: 2366–2382PubMedCrossRefGoogle Scholar
  34. Colland F, Daviet L (2004) Integrating a functional proteomic approach into the target discovery process. Biochimie 86: 625–632PubMedCrossRefGoogle Scholar
  35. Colland F, Rain JC, Gounon P, Labigne A, Legrain P, De Reuse H (2001) Identification of the Helicobacter pylori anti-sigma28 factor. Mol Microbiol 41: 477–487PubMedCrossRefGoogle Scholar
  36. Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S, Zhang S, Liu L, Lu M, O’Connor-McCourt M, Purisima EO, Wang E (2007) A map of human cancer signaling. Mol Syst Biol 3: 152PubMedCrossRefGoogle Scholar
  37. Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14 Spec No. 2: R171–R181PubMedCrossRefGoogle Scholar
  38. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23: 324–328PubMedCrossRefGoogle Scholar
  39. Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21: 1055–1062PubMedCrossRefGoogle Scholar
  40. Deng M, Mehta S, Sun F, Chen T (2002) Inferring domain-domain interactions from protein-protein interactions. Genome Res 12: 1540–1548PubMedCrossRefGoogle Scholar
  41. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. Febs J 272: 5129–5148PubMedCrossRefGoogle Scholar
  42. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763PubMedCrossRefGoogle Scholar
  43. Englebienne P, Fiaux H, Kuntz DA, Corbeil CR, Gerber-Lemaire S, Rose DR, Moitessier N (2007) Evaluation of docking programs for predicting binding of Golgi alpha-mannosidase II inhibitors: a comparison with crystallography. Proteins 69: 160–176PubMedCrossRefGoogle Scholar
  44. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402: 86–90PubMedCrossRefGoogle Scholar
  45. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245–246PubMedCrossRefGoogle Scholar
  46. Finn RD, Marshall M, Bateman A (2005) iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21: 410–412PubMedCrossRefGoogle Scholar
  47. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34: D247–D251PubMedCrossRefGoogle Scholar
  48. Fishman MC, Porter JA (2005) Pharmaceuticals: a new grammar for drug discovery. Nature 437: 491–493PubMedCrossRefGoogle Scholar
  49. Flajolet M, Rotondo G, Daviet L, Bergametti F, Inchauspe G, Tiollais P, Transy C, Legrain P (2000) A genomic approach of the hepatitis C virus generates a protein interaction map. Gene 242: 369–379PubMedCrossRefGoogle Scholar
  50. Franke L, Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78: 1011–1025PubMedCrossRefGoogle Scholar
  51. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47: 1739–1749PubMedCrossRefGoogle Scholar
  52. Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12: 364–369PubMedCrossRefGoogle Scholar
  53. Gaasterland T, Ragan MA (1998) Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb Comp Genomics 3: 199–217PubMedGoogle Scholar
  54. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38: 285–293PubMedCrossRefGoogle Scholar
  55. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631–636PubMedCrossRefGoogle Scholar
  56. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147PubMedCrossRefGoogle Scholar
  57. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673–5684PubMedCrossRefGoogle Scholar
  58. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391PubMedCrossRefGoogle Scholar
  59. Giallourakis C, Henson C, Reich M, Xie X, Mootha VK (2005) Disease gene discovery through integrative genomics. Annu Rev Genomics Hum Genet 6: 381–406PubMedCrossRefGoogle Scholar
  60. Gillet VJ, Willett P, Bradshaw J (2003) Similarity searching using reduced graphs. J Chem Inf Comput Sci 43: 338–345PubMedGoogle Scholar
  61. Giot L (2003) A protein interaction map of Drosophila melanogaster. Science 302: 1727–1736PubMedCrossRefGoogle Scholar
  62. Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Bussow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 15: 853–865PubMedCrossRefGoogle Scholar
  63. Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299: 283–293PubMedCrossRefGoogle Scholar
  64. Goll J, Uetz P (2007) Analyzing Protein Interaction Networks. In: Lengauer T (ed) Bioinformatics — from genomes to therapies. Wiley-VCH, Weinheim, pp 1121–1179CrossRefGoogle Scholar
  65. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci USA 104: 8685–8690PubMedCrossRefGoogle Scholar
  66. Graham DL, Lowe PN, Grime GW, Marsh M, Rittinger K, Smerdon SJ, Gamblin SJ, Eccleston JF (2002) MgF(3)(-) as a transition state analog of phosphoryl transfer. Chem Biol 9: 375–381PubMedCrossRefGoogle Scholar
  67. Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35: D291–D297PubMedCrossRefGoogle Scholar
  68. Guidener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, Mewes HW, Stumpflen V (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34: D436–D441CrossRefGoogle Scholar
  69. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33: D514–D517PubMedCrossRefGoogle Scholar
  70. Han DS, Kim HS, Jang WH, Lee SD, Suh JK (2004) PreSPI: a domain combination based prediction system for protein-protein interaction. Nucleic Acids Res 32: 6312–6320PubMedCrossRefGoogle Scholar
  71. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32 (Database issue): D258–D261PubMedCrossRefGoogle Scholar
  72. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47–C52PubMedCrossRefGoogle Scholar
  73. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genet 2: e88PubMedCrossRefGoogle Scholar
  74. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C, Roechert B, Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D, Nikolski M, Husi H, Brun C, Shanker K, Grant SG, Sander C, Bork P, Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P, Cesareni G, Xenarios I, Eisenberg D, Steipe B, Hogue C, Apweiler R (2004) The HUPO PSI’s molecular interaction format — a community standard for the representation of protein interaction data. Nat Biotechnol 22: 177–183PubMedCrossRefGoogle Scholar
  75. Hildebrandt A, Kohlbacher O, Lenhof H-P (2007) Modeling protein-protein and protein-DNA docking. In: Lengauer T (ed) Bioinformatics — from genomes to therapies. Wiley-VCH, Weinheim, pp 601–650CrossRefGoogle Scholar
  76. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183PubMedCrossRefGoogle Scholar
  77. Hu Z, Mellor J, Wu J, Kanehisa M, Stuart JM, DeLisi C (2007) Towards zoomable multidimensional maps of the cell. Nat Biotechnol 25: 547–554PubMedCrossRefGoogle Scholar
  78. Hu Z, Mellor J, Wu J, Yamada T, Holloway D, Delisi C (2005) VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Res 33: W352–W357PubMedCrossRefGoogle Scholar
  79. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function. J Comput Chem 27: 1876–1882PubMedCrossRefGoogle Scholar
  80. Huynen MA, Bork P (1998) Measuring genome evolution. Proc Natl Acad Sci USA 95: 5849–5856PubMedCrossRefGoogle Scholar
  81. Itzhaki Z, Akiva E, Altuvia Y, Margalit H (2006) Evolutionary conservation of domain-domain interactions. Genome Biol 7: R125PubMedCrossRefGoogle Scholar
  82. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302: 449–453PubMedCrossRefGoogle Scholar
  83. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42PubMedCrossRefGoogle Scholar
  84. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267: 727–748PubMedCrossRefGoogle Scholar
  85. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439: 168–174PubMedCrossRefGoogle Scholar
  86. Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22: 2291–2297PubMedCrossRefGoogle Scholar
  87. Jothi R, Cherukuri PF, Tasneem A, Przytycka TM (2006) Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol 362: 861–875PubMedCrossRefGoogle Scholar
  88. Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 105: 934–939PubMedCrossRefGoogle Scholar
  89. Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha GH, Ukani L, Chepanoske CL, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby LM, Peltier JM, Botas J, Hughes RE (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3: e82PubMedCrossRefGoogle Scholar
  90. Kämper A, Rognan D, Lengauer T (2007) Lead Identification by virtual screaning. In: Lengauer T (ed) Bioinformatics — from genomes to therapies. Wiley-VCH, Weinheim, pp 651–704CrossRefGoogle Scholar
  91. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36: D480–D484PubMedCrossRefGoogle Scholar
  92. Kann MG (2007) Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform 8: 333–346PubMedCrossRefGoogle Scholar
  93. Kann MG, Jothi R, Cherukuri PF, Przytycka TM (2007) Predicting protein domain interactions from coevolution of conserved regions. Proteins 67: 811–820PubMedCrossRefGoogle Scholar
  94. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25: 197–206PubMedCrossRefGoogle Scholar
  95. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57: 225–242PubMedCrossRefGoogle Scholar
  96. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H (2007a) IntAct-open source resource for molecular interaction data. Nucleic Acids Res 35: D561–D565PubMedCrossRefGoogle Scholar
  97. Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, Bader GD, Xenarios I, Wojcik J, Sherman D, Tyers M, Salama JJ, Moore S, Ceol A, Chatr-Aryamontri A, Oesterheld M, Stumpflen V, Salwinski L, Nerothin J, Cerami E, Cusick ME, Vidal M, Gilson M, Armstrong J, Woollard P, Hogue C, Eisenberg D, Cesareni G, Apweiler R, Hermjakob H (2007b) Broadening the Horizon — Level 2.5 of the HUPO-PSI Format for Molecular Interactions. BMC Biol 5: 44PubMedCrossRefGoogle Scholar
  98. Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6: 202–210PubMedCrossRefGoogle Scholar
  99. Korbel JO, Doerks T, Jensen LJ, Perez-Iratxeta C, Kaczanowski S, Hooper SD, Andrade MA, Bork P (2005) Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol 3: e134PubMedCrossRefGoogle Scholar
  100. Korbel JO, Jensen LJ, von Mering C, Bork P (2004) Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 22:911–917PubMedCrossRefGoogle Scholar
  101. Krämer A, Horn HW, Rice JE (2003) Fast 3D molecular superposition and similarity search in databases of flexible molecules. J Comput Aided Mol Des 17: 13–18PubMedCrossRefGoogle Scholar
  102. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–643PubMedCrossRefGoogle Scholar
  103. Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36: D684–D688PubMedCrossRefGoogle Scholar
  104. LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C, Fields S, Hughes RE (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438: 103–107PubMedCrossRefGoogle Scholar
  105. Lage K, Karlberg EO, Sterling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tumer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25: 309–316PubMedCrossRefGoogle Scholar
  106. Legrain P, Selig L (2000) Genome-wide protein interaction maps using two-hybrid systems. FEBS Lett 480: 32–36PubMedCrossRefGoogle Scholar
  107. Lemmen C, Lengauer T, Klebe G (1998) FLEXS: a method for fast flexible ligand superposition. J Med Chem 41: 4502–4520PubMedCrossRefGoogle Scholar
  108. Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Novel technologies for virtual screening. Drug Discov Today 9: 27–34PubMedCrossRefGoogle Scholar
  109. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34: D257–D260PubMedCrossRefGoogle Scholar
  110. Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabasi AL, Vidal M, Zoghbi HY (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125: 801–814PubMedCrossRefGoogle Scholar
  111. Lin J, Gan CM, Zhang X, Jones S, Sjoblom T, Wood LD, Parsons DW, Papadopoulos N, Kinzler KW, Vogelstein B, Parmigiani G, Velculescu VE (2007) A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res 17: 1304–1318PubMedCrossRefGoogle Scholar
  112. Liu M, Liberzon A, Kong SW, Lai WR, Park PJ, Kohane IS, Kasif S (2007) Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet 3: e96PubMedCrossRefGoogle Scholar
  113. Loscalzo J, Kohane I, Barabasi AL (2007) Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3: 124PubMedCrossRefGoogle Scholar
  114. Lu X, Jain VV, Finn PW, Perkins DL (2007) Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol Syst Biol 3: 98PubMedCrossRefGoogle Scholar
  115. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35: D237–D240PubMedCrossRefGoogle Scholar
  116. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999a) Detecting protein function and protein-protein interactions from genome sequences. Science 285: 751–753PubMedCrossRefGoogle Scholar
  117. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999b) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83–86PubMedCrossRefGoogle Scholar
  118. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999c) A combined algorithm for genome-wide prediction of protein function [see comments]. Nature 402: 83–86PubMedCrossRefGoogle Scholar
  119. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68: 76–90PubMedCrossRefGoogle Scholar
  120. McGregor MJ, Muskal SM (1999) Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J Chem Inf Comput Sci 39: 569–574PubMedGoogle Scholar
  121. Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102: 10930–10935PubMedCrossRefGoogle Scholar
  122. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM, Menon S, Hanumanthu G, Gupta M, Upendran S, Gupta S, Mahesh M, Jacob B, Mathew P, Chatterjee P, Arun KS, Sharma S, Chandrika KN, Deshpande N, Palvankar K, Raghavnath R, Krishnakanth R, Karathia H, Rekha B, Nayak R, Vishnupriya G, Kumar HG, Nagini M, Kumar GS, Jose R, Deepthi P, Mohan SS, Gandhi TK, Harsha HC, Deshpande KS, Sarker M, Prasad TS, Pandey A (2006) Human protein reference database—2006 update. Nucleic Acids Res 34: D411–D414PubMedCrossRefGoogle Scholar
  123. Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P (2003) Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat Biotechnol 21: 790–795PubMedCrossRefGoogle Scholar
  124. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Compu Chem 19: 1639–1662CrossRefGoogle Scholar
  125. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Buillard V, Cerutti L, Copley R, Courcelle E, Das U, Daugherty L, Dibley M, Finn R, Fleischmann W, Gough J, Haft D, Hulo N, Hunter S, Kahn D, Kanapin A, Kejariwal A, Labarga A, Langendijk-Genevaux PS, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Nikolskaya AN, Orchard S, Orengo C, Petryszak R, Selengut JD, Sigrist CJ, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2007) New developments in the InterPro database. Nucleic Acids Res 35: D224–D228PubMedCrossRefGoogle Scholar
  126. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3: e405PubMedCrossRefGoogle Scholar
  127. Ng SK, Zhang Z, Tan SH (2003a) Integrative approach for computationally inferring protein domain interactions. Bioinformatics 19: 923–929PubMedCrossRefGoogle Scholar
  128. Ng SK, Zhang Z, Tan SH, Lin K (2003b) InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucleic Acids Res 31: 251–254PubMedCrossRefGoogle Scholar
  129. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A (2005) The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci USA 102: 10493–10498PubMedCrossRefGoogle Scholar
  130. Noirot P, Noirot-Gros MF (2004) Protein interaction networks in bacteria. Curr Opin Microbiol 7: 505–512PubMedCrossRefGoogle Scholar
  131. Nooren IM, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22: 3486–3492PubMedCrossRefGoogle Scholar
  132. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2: 2006 0015PubMedCrossRefGoogle Scholar
  133. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1: 2005 0010PubMedCrossRefGoogle Scholar
  134. Orchard S, Kerrien S, Jones P, Ceol A, Chatr-Aryamontri A, Salwinski L, Nerothin J, Hermjakob H (2007a) Submit Your Interaction Data the IMEx Way: a Step by Step Guide to Trouble-free Deposition. Proteomics: 28–34Google Scholar
  135. Orchard S, Salwinski L, Kerrien S, Montecchi-Palazzi L, Oesterheld M, Stumpflen V, Ceol A, Chatraryamontri A, Armstrong J, Woollard P, Salama JJ, Moore S, Wojcik J, Bader GD, Vidal M, Cusick ME, Gerstein M, Gavin AC, Superti-Furga G, Greenblatt J, Bader J, Uetz P, Tyers M, Legrain P, Fields S, Mulder N, Gilson M, Niepmann M, Burgoon L, De Las Rivas J, Prieto C, Perreau VM, Hogue C, Mewes HW, Apweiler R, Xenarios I, Eisenberg D, Cesareni G, Hermjakob H (2007b) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25: 894–898PubMedCrossRefGoogle Scholar
  136. Orengo CA, Thornton JM (2005) Protein families and their evolution-a structural perspective. Annu Rev Biochem 74: 867–900PubMedCrossRefGoogle Scholar
  137. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71: 1–11PubMedCrossRefGoogle Scholar
  138. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) Use of contiguity on the chromosome to predict functional coupling. In Silico Biol 1: 93–108PubMedGoogle Scholar
  139. Pacifico S, Liu G, Guest S, Parrish JR, Fotouhi F, Finley RL Jr (2006) A database and tool, IM Browser, for exploring and integrating emerging gene and protein interaction data for Drosophila. BMC Bioinformatics 7: 195PubMedCrossRefGoogle Scholar
  140. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW, Ruepp A, Frishman D (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21: 832–834PubMedCrossRefGoogle Scholar
  141. Pagel P, Oesterheld M, Tovstukhina O, Strack N, Stumpflen V, Frishman D (2007) DIMA 2.0 predicted and known domain interactions. Nucleic Acids Res 36: D651–D655PubMedCrossRefGoogle Scholar
  142. Pagel P, Wong P, Frishman D (2004) A domain interaction map based on phylogenetic profiling. J Mol Biol 344: 1331–1346PubMedCrossRefGoogle Scholar
  143. Pages S, Belaich A, Belaich JP, Morag E, Lamed R, Shoham Y, Bayer EA (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29: 517–527PubMedCrossRefGoogle Scholar
  144. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24: 805–815PubMedCrossRefGoogle Scholar
  145. Park J, Lappe M, Teichmann SA (2001) Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. J Mol Biol 307: 929–938PubMedCrossRefGoogle Scholar
  146. Parrish JR, Yu J, Liu G, Hines JA, Chan JE, Mangiola BA, Zhang H, Pacifico S, Fotouhi F, Dirita VJ, Ideker T, Andrews P, Finley RL Jr (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8: R130PubMedCrossRefGoogle Scholar
  147. Pasek S, Bergeron A, Risler JL, Louis A, Ollivier E, Raffinot M (2005) Identification of genomic features using microsyntenies of domains: domain teams. Genome Res 15: 867–874PubMedCrossRefGoogle Scholar
  148. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300: 445–452PubMedCrossRefGoogle Scholar
  149. Pazos F, Ranea JA, Juan D, Sternberg MJ (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 352: 1002–1015PubMedCrossRefGoogle Scholar
  150. Pazos F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14: 609–614PubMedCrossRefGoogle Scholar
  151. Pearlman RS (1987) Rapid generation of high quality approximate 2-dimension molecular structures. Chem Des Auto News 2: 1–6Google Scholar
  152. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96: 4285–4288PubMedCrossRefGoogle Scholar
  153. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D, Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sole X, Hernandez P, Lazaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, Livingston DM, Gruber SB, Parvin JD, Vidal M (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39: 1338–1349PubMedCrossRefGoogle Scholar
  154. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31: 3625–3630PubMedCrossRefGoogle Scholar
  155. Raghavachari B, Tasneem A, Przytycka TM, Jothi R (2008) DOMINE: a database of protein domain interactions. Nucleic Acids Res 36: D656–D661PubMedCrossRefGoogle Scholar
  156. Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S (2005) An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol 346: 203–214PubMedCrossRefGoogle Scholar
  157. Ramírez F, Schlicker A, Assenov Y, Lengauer T, Albrecht M (2007) Computational analysis of human protein interaction networks. Proteomics 7: 2541–2552PubMedCrossRefGoogle Scholar
  158. Rarey M, Degen J, Reulecke I (2007) Docking and scoring for structure-based drug design. In: Lengauer T (ed) Bioinformatics — from genomes to therapies. Wiley-VCH, Weinheim, pp 541–600CrossRefGoogle Scholar
  159. Rarey M, Dixon JS (1998) Feature trees: a new molecular similarity measure based on tree matching. J Comput Aided Mol Des 12: 471–490PubMedCrossRefGoogle Scholar
  160. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261: 470–489PubMedCrossRefGoogle Scholar
  161. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17: 1030–1032PubMedCrossRefGoogle Scholar
  162. Riley R, Lee C, Sabatti C, Eisenberg D (2005) Inferring protein domain interactions from databases of interacting proteins. Genome Biol 6: R89PubMedCrossRefGoogle Scholar
  163. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, Waegele B, Schmidt T, Doudieu ON, Stumpflen V, Mewes HW (2008) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 36: D646–D650PubMedCrossRefGoogle Scholar
  164. Ruffner H, Bauer A, Bouwmeester T (2007) Human protein-protein interaction networks and the value for drug discovery. Drug Discov Today 12: 709–716PubMedCrossRefGoogle Scholar
  165. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional models builders using 639 X-ray structures. J Chem Inf Comput Sci 34: 1000–1008Google Scholar
  166. Saito R, Suzuki H, Hayashizaki Y (2002) Interaction generality, a measurement to assess the reliability of a protein-protein interaction. Nucleic Acids Res 30: 1163–1168PubMedCrossRefGoogle Scholar
  167. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32: D449–D451PubMedCrossRefGoogle Scholar
  168. Santonico E, Castagnoli L, Cesareni G (2005) Methods to reveal domain networks. Drug Discov Today 10: 1111–1117PubMedCrossRefGoogle Scholar
  169. Sato T, Yamanishi Y, Horimoto K, Kanehisa M, Toh H (2006) Partial correlation coefficient between distance matrices as a new indicator of protein-protein interactions. Bioinformatics 22: 2488–2492PubMedCrossRefGoogle Scholar
  170. Sato T, Yamanishi Y, Kanehisa M, Toh H (2005) The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21: 3482–3489PubMedCrossRefGoogle Scholar
  171. Schlicker A, Huthmacher C, Ramirez F, Lengauer T, Albrecht M (2007) Functional evaluation of domain-domain interactions and human protein interaction networks. Bioinformatics 23: 859–865PubMedCrossRefGoogle Scholar
  172. Schuster-Bockler B, Bateman A (2007) Reuse of structural domain-domain interactions in protein networks. BMC Bioinformatics 8: 259PubMedCrossRefGoogle Scholar
  173. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504PubMedCrossRefGoogle Scholar
  174. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 102: 1974–1979PubMedCrossRefGoogle Scholar
  175. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3: 88PubMedCrossRefGoogle Scholar
  176. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/ receptor induced fit effects. J Med Chem 49: 534–553PubMedCrossRefGoogle Scholar
  177. Snel B, Huynen MA (2004) Quantifying modularity in the evolution of biomolecular systems. Genome Res 14: 391–397PubMedCrossRefGoogle Scholar
  178. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: Current status and future challenges. Proteins 65: 15–26PubMedCrossRefGoogle Scholar
  179. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100: 12123–12128PubMedCrossRefGoogle Scholar
  180. Sprinzak E, Margalit H (2001) Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 311: 681–692PubMedCrossRefGoogle Scholar
  181. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34: D535–D539PubMedCrossRefGoogle Scholar
  182. Stein A, Russell RB, Aloy P (2005) 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res 33: D413–D417PubMedCrossRefGoogle Scholar
  183. Stelzl U, Wanker EE (2006) The value of high quality protein-protein interaction networks for systems biology. Curr Opin Chem Biol 10: 551–558PubMedCrossRefGoogle Scholar
  184. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23: 2651–2659PubMedCrossRefGoogle Scholar
  185. Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A, Riddle DL, Ruvkun G, Vidal M (2004) Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signaling network. Mol Cell 13: 469–482PubMedCrossRefGoogle Scholar
  186. Uetz P (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627PubMedCrossRefGoogle Scholar
  187. Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, Berger B, Rajagopala SV, Roupelieva M, Rose D, Fossum E, Haas J (2006) Herpesviral protein networks and their interaction with the human proteome. Science 311: 239–242PubMedCrossRefGoogle Scholar
  188. Uetz P, Rajagopala SV, Dong YA, Haas J (2004) From ORFeomes to protein interaction maps in viruses. Genome Res 14: 2029–2033PubMedCrossRefGoogle Scholar
  189. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8: R39PubMedCrossRefGoogle Scholar
  190. Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14: 208–216PubMedCrossRefGoogle Scholar
  191. von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, Zimmer R, Roberts R, Baric R, Haas J (2007) Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS ONE 2: e459CrossRefGoogle Scholar
  192. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P (2007) STRING 7 — recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35: D358–D362CrossRefGoogle Scholar
  193. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417: 399–403CrossRefGoogle Scholar
  194. Wang H, Segal E, Ben-Hur A, Li QR, Vidal M, Koller D (2007a) InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Genome Biol 8: R192PubMedCrossRefGoogle Scholar
  195. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46: 2287–2303PubMedCrossRefGoogle Scholar
  196. Wang RS, Wang Y, Wu LY, Zhang XS, Chen L (2007b) Analysis on multi-domain cooperation for predicting protein-protein interactions. BMC Bioinformatics 8: 391PubMedCrossRefGoogle Scholar
  197. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction and encoding rules. J Chem Inf Comput Sci 28: 31–36Google Scholar
  198. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001–1009PubMedCrossRefGoogle Scholar
  199. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E (2007) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35: D5–D12PubMedCrossRefGoogle Scholar
  200. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906PubMedCrossRefGoogle Scholar
  201. Wojcik J, Schachter V (2001) Protein-protein interaction map inference using interacting domain profile pairs. Bioinformatics 17(Suppl 1): S296–S305PubMedGoogle Scholar
  202. Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73: 1051–1087PubMedCrossRefGoogle Scholar
  203. Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22: 2800–2805PubMedCrossRefGoogle Scholar
  204. Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JD (2007) A modular network model of aging. Mol Syst Biol 3: 147PubMedCrossRefGoogle Scholar
  205. Xue L, Godden JW, Bajorath J (2000) Evaluation of descriptors and mini-fingerprints for the identification of molecules with similar activity. J Chem Inf Comput Sci 40: 1227–1234PubMedGoogle Scholar
  206. Yaffe MB (2006) “Bits” and pieces. Sci STKE 2006: pe28PubMedCrossRefGoogle Scholar
  207. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25: 1119–1126PubMedCrossRefGoogle Scholar
  208. Yook SH, Oltvai ZN, Barabasi AL (2004) Functional and topological characterization of protein interaction networks. Proteomics 4: 928–942PubMedCrossRefGoogle Scholar
  209. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3: e59PubMedCrossRefGoogle Scholar
  210. Zarrinpar A, Bhattacharyya RP, Lim WA (2003) The structure and function of proline recognition domains. Sci STKE 2003: RE8PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • D. Frishman
    • 1
    • 2
    Email author
  • M. Albrecht
    • 3
  • H. Blankenburg
    • 3
  • P. Bork
    • 4
    • 5
  • E. D. Harrington
    • 4
  • H. Hermjakob
    • 6
  • L. Juhl Jensen
    • 4
    • 7
  • D. A. Juan
    • 8
  • T. Lengauer
    • 3
  • P. Pagel
    • 2
  • V. Schachter
    • 9
  • A. Valencia
    • 8
  1. 1.Institute for Bioinformatics and Systems BiologyHelmholtz Zentrum München — German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Department of Genome Oriented BioinformaticsTechnische Universität Munchen, Wissenschaftzentrum WeihenstephanFreisingGermany
  3. 3.Department of Computational Biology and Applied AlgorithmicMax-Planck-Institute for InformaticsSaarbrückenGermany
  4. 4.Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
  5. 5.Max-Delbrück-Centre for Molecular MedicineBerlin-Buch, BerlinGermany
  6. 6.European Molecular Biology Laboratory OutstationThe European Bioinformatics InstituteHinxton, CambridgeUK
  7. 7.Novo Nordisk Foundation Center for Protein ResearchPanum InstituteCopenhagenDenmark
  8. 8.Structural Biology and Biocomputing ProgrammeSpanish National Cancer Research Centre (CNIO)Madrid
  9. 9.Computational Systems Biology Group - Genoscope - CEAEvryFrance

Personalised recommendations