Advertisement

The Golgi apparatus in disease

  • N. K. Gonatas
Chapter
Part of the Molecular and Cell Biology Updates book series (MCBU)

Summary

As attested by the chapters in this book, the past fifteen years have witnessed impressive progress towards the understanding of the structure and function of the Golgi apparatus (GA) from yeast to the higher eukaryotes. This progress has made possible the recognition and better appreciation of defects in the organelle which are associated with disease. This review on the GA in disease will include the following topics:

Defects of the GA in diseases with abnormal trafficking or processing of proteins and lipids.

  • The phosphotransferase deficiency in I-cell disease and pseudo-Hurler polydystrophy.

  • The deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the oculocerebrorenal syndrome of Lowe.

  • Cystic fibrosis and the hypothesis of defective acidification.

  • Autosomal dominant polycystic kidney disease and the hypothesis of delayed proteoglycan synthesis.

  • The block of enzyme transport in congenital sucrase-isomaltase deficiency.

  • Congenital dyserythropoietic anaemia type II (HEMPAS), and a putative defect of alpha-mannosidase II or Nacetylglucosaminyl-transferase II.

  • Tangier disease and type-C Niemann-Pick disease; disorders involving the transport of lipids in the GA.

Autoimmune diseases and antibodies against the GA.

  • Sjogren’s syndrome and the p230trans-Golgi protein.

  • Systemic lupus erythematosus and the Golgin-95 and -160 kD proteins.

Fragmentation of the GA.

  • MG160, a fibroblast growth factor and E-selectin binding sialoglycoprotein of the medial cisternae of the GA, is a reliable marker of the organelle in normal and diseased tissues.

  • Fragmentation of the GA of motor neurons in amyotrophic lateral sclerosis (ALS), and in transgenic mice expressing mutant human Cu,Zn superoxide dismutase 1, an animal model of ALS.

  • Fragmentation of the neuronal GA in Alzheimer’s disease, and genetic and biochemical evidence for the involvement of the organelle in the pathogenesis of the disease.

Keywords

Cystic Fibrosis Amyotrophic Lateral Sclerosis Golgi Apparatus Lysosomal Enzyme Autosomal Dominant Polycystic Kidney Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander, D., Deeb, M. and Talj, F. (1986) Heterozygosity for phosphodiester glycosidase deficiency: a novel human mutation of lysosomal enzyme processing.Human Gen. 73: 53–59.CrossRefGoogle Scholar
  2. Allan, V.J. and Kreis, T.E. (1986) A microtubule-binding protein associated with membranes of the Golgi apparatus.J. Cell Biol. 103: 2229–2239.CrossRefPubMedGoogle Scholar
  3. Amara, J.F., Cheng, S.H. and Smith, A.E. (1992) Intracellular protein trafficking defects in human disease.Trends Cell Biol. 2: 145–148.CrossRefPubMedGoogle Scholar
  4. Assmann, G., von Eckardstein, H. and Brewer, B., Jr. (1995) Familial high density lipoprotein deficiency: Tangier Disease. In: C.R. Scriver (ed.):The Metabolic and Molecular Bases of Inherited Disease. Seventh Edition, McGraw-Hill, Inc. New York, pp 2061–2063.Google Scholar
  5. Avrameas, S. and Ternynck, T. (1993) The natural autoantibodies system: between hypotheses and facts.Molec. Immunol. 30: 1133–1142.CrossRefGoogle Scholar
  6. Barasch, J. and al-Awqati, Q. (1992) Chloride channels, Golgi pH and cystic fibrosis.Trends Cell Biol. 2: 3537.CrossRefGoogle Scholar
  7. Blanchette-Mackie, E.J., Dwyer, N.K., Amende, L.M., Kruth, H.S., Butler, J.D., Sokol, J., Comly, M.E., Vanier, M.T., August, J.T., Brady, R.O. and Pentchev, P.G. (1988) Type-C Niemann-Pick disease: Low density lipoprotein uptake is associated with premature accumulation in the Golgi complex and excessive cholesterol storage in lysosomes.Proc. Natl Acad. Sci. USA. 85: 8022–8026.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Borchelt, D.L., Guarnieri, M., Wong, P.C., Lee, M.K., Slunt, H.S., Xu, Z.S., Sisodia, S.S., Price, D.L. and Cleveland, D.W. (1995) Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wildtype subunit function.J. Biol. Chem. 270: 3234–3238.CrossRefPubMedGoogle Scholar
  9. Bretscher, M.S. and Munro, S. (1993) Cholesterol and the Golgi apparatus.Science 261: 1280–1281.CrossRefPubMedGoogle Scholar
  10. Burrus, L.W., Zuber, M.E., Lueddecke, B.A. and Olwin, B.B. (1992) Identification of a cysteine-rich receptor for fibroblast growth factors.Malec. Cell Biol. 12: 5600–5609.Google Scholar
  11. Campadelli, G., Brandimarti, R., Di Lazzaro, C., Ward, P.L., Roizman, B. and Torrisi, M.R. (1993) Fragmentation and dispersal of Golgi proteins and redistribution of glycoproteins and glycolipids processed through the Golgi apparatus after infection with herpes simplex virus 1.Proc. Natl Acad. Sci. USA. 90: 2798–2802.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Caporaso, G.L., Takei, K., Gandy, S.E., Matteoli, M., Mundigl, O., Greengard, P. and DeCamilli, P. (1994) Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein.J. Neurosci. 14: 3122–3138.PubMedGoogle Scholar
  13. Carone, F.A., Jin, H., Nakamura, S. and Kanwar, Y.S. (1993) Decreased synthesis and delayed processing of sulfated glycoproteins by cells from human polycystic kidneys.Lab. Invest. 68: 413–418.PubMedGoogle Scholar
  14. Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O’Riordan, C.R. and Smith, A.E. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis.Cell 63: 827–834.CrossRefPubMedGoogle Scholar
  15. Crookston, J.H., Crookston, M.C., Burnie, K.L., Francombe, W.H., Dacie, J.V., Davis, J.A. and Lewis, S.M. (1969) Hereditary erythroblastic multinuclearity associated with a positive acidified-serum test: a typical congenital dyserythropoietic anaemia.Brit. J. Haematol. 17: 11–26.CrossRefGoogle Scholar
  16. Croul, S., Mezitis, S.G.E., Stieber, A., Chen, Y., Gonatas, J.O., Goud, B. and Gonatas, N.K. (1990) Immunocytochemical visualization of the Golgi apparatus in several species, including human, and tissues with an antiserum against MG-160, a sialoglycoprotein of rat Golgi apparatus.J. Histochem. Cytochem. 38: 957–963.CrossRefPubMedGoogle Scholar
  17. Deng, H.X., Hentati, A., Tainer, J.A., Iqbal, Z., Cayabyab, A., Hung, W.-Y., Getzoff, E.D., Hu, P., Herzfeldt, B., Roos, R.P., Warner, C., Deng, G., Soriano, E., Smyth, C., Parge, H.E., Ahmed, A., Roses, A.D., Hallewell, R.A., Pericak-Vance, M.A. and Siddique, T. (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase.Science 261: 1047–1051.CrossRefPubMedGoogle Scholar
  18. Erlich, R., Gleeson, P.A., Campbell, P., Dietzsch, E. and Toh, B.-H. (1996) Molecular characterization oftrans-Golgi p230. A human peripheral membrane protein encoded by a gene on chromosome 6p12–22 contains extensive coiled-coil a-helical domains and a granin motif.J. Biol. Chem. 271: 8328–8337.CrossRefPubMedGoogle Scholar
  19. Farquhar, M.G. (1985) Progress in unraveling pathways of Golgi traffic.Ann. Rev. Cell Biol. 1: 447–488.CrossRefPubMedGoogle Scholar
  20. Farquhar, M.G. and Palade, G.E. (1981) The Golgi apparatus (complex) - (1954–1981) - from artefact to center stage.J. Cell Biol. 91: 77S–103S.CrossRefPubMedGoogle Scholar
  21. Fritzler, M.J. and Salazar, M. (1991) Diversity and origin of rheumatologic autoantibodies.Clin. Microbial. Rev. 4: 256–269.Google Scholar
  22. Fritzler, M.J., Hamel, J.C., Ochs, R.L. and Chan, E.K.L. (1993) Molecular characterization of two human autoantigens: Unique cDNAs encoding 95 and 160 kD proteins of a putative family in the Golgi complex.J. Exp. Med. 178: 49–62.CrossRefPubMedGoogle Scholar
  23. Fukuda, M.N. (1993) Congenital dyserythropoietic anaemia type II (HEMPAS) and its molecular basis.Baillere’s Clin. Haematol. 6: 493–511.CrossRefGoogle Scholar
  24. Gonatas, J.O., Mezitis, S.G.E., Stieber, A., Fleischer, B. and Gonatas, N.K. (1989) MG-160: a novel sialoglycoprotein of the medial cisternae of the Golgi apparatus.J. Biol. Chem. 264: 546–653.Google Scholar
  25. Gonatas, N.K. (1994) Contributions to the physiology and pathology of the Golgi apparatus. Am.J. Pathol. 145: 751–761.PubMedCentralPubMedGoogle Scholar
  26. Gonatas, N.K., Stieber, A., Mourelatos, Z., Chen, Y., Gonatas, J.O., Appel, S.H., Hays, A.P., Hickey, W.F. and Hauw, J.J. (1992) Fragmentation of the Golgi apparatus of motor neurons in Amyotrophic Lateral Sclerosis. Am.J. Pathol. 140: 731–737.PubMedCentralPubMedGoogle Scholar
  27. Gonatas, J.O., Mourelatos, Z., Stieber, A., Lane, W.S., Brosius, J. and Gonatas, N.K. (1995) MG-160, a membrane sialoglycoprotein of the medial cisternae of the rat Golgi apparatus, binds basic fibroblast growth factor and exhibits a high level of sequence identity to a chicken fibroblast growth factor receptor.J. Cell Sci. 108: 457–467.PubMedGoogle Scholar
  28. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Poichow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.-X., Chen, W., Zhai, P., Sufit, R.L. and Siddique, T. (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation.Science 264: 1772–1775.CrossRefPubMedGoogle Scholar
  29. Hammerschlag, R., Stone, G.C., Bolen, F.A., Lindsay, J.D., Ellisman, M.H. (1982) Evidence that all newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.J. Cell Biol. 93: 568–575.CrossRefPubMedGoogle Scholar
  30. Harris, P.C., Ward, C.J., Peral, B. and Hughes, J. (1995) Autosomal dominant polycystic kidney disease: molecular analysis.Hum. Molec. Genet. 4: 1745–1749.PubMedGoogle Scholar
  31. Hauri, H.-P., Roth, J., Sterchi, E.E. and Lentze, M.J. (1985) Transport to cell surface of intestinal sucrase-isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase-isomaltase deficiency.Proc. Natl Acad. Sci. USA 82: 4434–4427.CrossRefGoogle Scholar
  32. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F. and Cole, G. (1996) Correlative memory deficits, AP elevation, and amyloid plaques in transgenic mice.Science 274: 99–102.CrossRefPubMedGoogle Scholar
  33. Ioffe, E. and Stanley, P. (1994) Mice lacking N-acetylglucosaminyl transferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates.Proc. Natl Acad. Sci. USA 91: 728–732.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Johnston, P.A., Stieber, A. and Gonatas, N.K. (1994) A hypothesis on the traffic of MG160, a medial-Golgi sialoglycoprotein, from the trans-Golgi network to the Golgi cisternae.J. Cell Sci. 107: 529–537.PubMedGoogle Scholar
  35. Kasper, D., Dittmer, F., von Figura, K. and Pohlman, R. (1996) Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes.J. Cell Biol. 134: 615–623.CrossRefPubMedGoogle Scholar
  36. Kleene, R. and Berger, E.G. (1993) The molecular and cell biology of glycosyltransferases.Biochim. Biophys. Acta 1154: 283–325.CrossRefPubMedGoogle Scholar
  37. Kooy, J., Toh, B.-T., Pettitt, J.M., Erlich, R. and Gleeson, P.A. (1992) Human autoantibodies as reagents to conserved Golgi components.J. Biol. Chem. 267: 20255–20263.PubMedGoogle Scholar
  38. Kornfeld, S. (1986) Trafficking of lysosomal enzymes in normal and disease states.J. Clin. Invest. 77: 1–6.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kornfeld, S. (1992) Structure and function of the mannose 6-phosphate/insulin like growth factor II receptors.Ann. Rev. Biochem. 61: 307–330.CrossRefPubMedGoogle Scholar
  40. Kornfeld, S. and Sly, W.S. (1995) I-cell disease and pseudo-Hurler polydystrophy: Disorders of lysosomal enzyme phosphorylation and localization.In: C.R.Scriver (ed.):The Metabolic and Molecular Bases of Inherited Disease, Seventh Edition, McGraw-Hill, Inc., New York, pp 2495–2508.Google Scholar
  41. Kosik, K.S. (1994) The Alzheimer’s disease sphinx: a riddle with plaques and tangles.J. Cell Biol. 127: 1501–1504.CrossRefPubMedGoogle Scholar
  42. Kovacs, D.M., Fausett, H.J., Page, K.J., Kim, T-W, Moir, R.D., Merriam, D.E., Hollister, R.D., Hallmark, O.G., Mancini, R., Felsenstein, K.M., Hyman, B.T., Tanzi, R.E. and Wasco, W. (1996) Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells.Nature Med. 2: 224–229.CrossRefPubMedGoogle Scholar
  43. Lavi, E., Wang, Q., Weiss, S.R. and Gonatas, N.K. (1996) Syncytia formation induced by Coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus.Virology 221: 325–334.CrossRefPubMedGoogle Scholar
  44. Liu, Z.Z., Carone, F.A., Nakamura, S. and Kanwar, Y.S. (1992) Altered synthesis of proteoglycans by cyst-derived cells from autosomal-dominant polycystic kidneys. Am.J. Physiol. 263: F697–F704.PubMedGoogle Scholar
  45. Lucocq, J., Warren, G. and Pryde, J. (1991) Okadaic acid induces Golgi apparatus fragmentation and arrest of intracellular transport.J. Cell Sci. 100: 753–759.PubMedGoogle Scholar
  46. Mawby, W.J., Tanner, M.J.A., Anstee, D.J. and Clamp, J.R. (1983) Incomplete glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia type II (CDAII).Brit. J. Haematol. 55: 357–368.CrossRefGoogle Scholar
  47. Metzler, M., Gertz, A., Sarkar, M., Schachter, H., Schrader, J.W. and Marth, J.D. (1994) Complex asparagine-linked oligosaccharides are required for morphogenetic events during post-implantation development.EMBO J. 13: 2056–2065.PubMedCentralPubMedGoogle Scholar
  48. Migheli, A., Pezzulo, T., Attanasio, A. and Schiffer, D. (1993) Peripherin immunoreactive structures in amyotrophic lateral sclerosis.Lab. Invest. 68: 185–191.PubMedGoogle Scholar
  49. Misteli, T. (1996) Molecular mechanisms in the disassembly and reassembly of the mammalian Golgi apparatus during M-phase.FEBS Lett. 389: 66–69.CrossRefPubMedGoogle Scholar
  50. Mourelatos, Z., Adler, H., Hirano, A., Donnenfeld, H., Gonatas, J.O. and Gonatas, N.K. (1990) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis revealed by organelle-specific antibodies.Proc. Natl Acad. Sci. USA 87: 4393–4395.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Mourelatos, Z., Gonatas, J.O., Nycum, L.M., Gonatas, N.K. and Siegel, J.A. (1995) Assignment of theGLGI gene for MG-160, a fibroblast growth factor and E-selectin binding membrane sialoglycoprotein of the Golgi apparatus, to chromosome 16g22–23 by fluorescencein situ hybridization.Genomics 28: 354–355.CrossRefPubMedGoogle Scholar
  52. Mourelatos, Z., Gonatas, N.K., Cinato, E. and Gonatas, N.K.(1996a). Cloning and sequence analysis of the human MG160, a fibroblast growth factor and E-selectin binding membrane sialoglycoprotein of the Golgi apparatus.DNA Cell Biol. 15: 1121–1128.CrossRefPubMedGoogle Scholar
  53. Mourelatos, Z., Gonatas, J.O., Stieber, A., Gurney, M.E. and Dal Canto, M.C. (1996b). The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease.Proc. Natl Acad. Sci. USA 93: 5472–5477.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Nakano, I. and Hirano, A. (1987) Atrophic cell processes of large motor neurons in the anterior horn in Amyotrophic Lateral Sclerosis: observation with silver impregnation method.J. Neuropathol. Exp. Neurol. 46: 40–49.CrossRefPubMedGoogle Scholar
  55. Olivos-Glander, I., Janne, P.A. and Nussbaum, R.L. (1995) The oculocerebrorenal syndrome gene product is a 105 kD protein localized to the Golgi complex. Am.J. Hum. Genet. 57: 817–832.PubMedCentralPubMedGoogle Scholar
  56. Pagano, R.E. (1990) The Golgi apparatus: insights from lipid biochemistry.Biochem. Soc. Trans. 18: 361–366.CrossRefPubMedGoogle Scholar
  57. Perisic, M. and Cuenod, M. (1972) Synaptic transmission depressed by colchicine blockade of axoplasmic flow.Science 175: 1140–1142.CrossRefPubMedGoogle Scholar
  58. Pohlmann, R., Boeker, M.W. and von Figura, K. (1995) The two mannose. 6-phosphate receptors transport distinct complements of lysosomal proteins.J. Biol. Chem. 270: 27311–27318.CrossRefPubMedGoogle Scholar
  59. Renier, G., Rousselet, M.C., Carrere, F., Croue, A., Andre, C., Oksman, F., Chevailler, A. and Hurez, D. (1994) Golgi autoantibodies and autoantigens.J. Autoimmunol. 7: 133–143.CrossRefGoogle Scholar
  60. Robbins, E. and Gonatas, N.K. (1964a). The ultrastructure of a mammalian cell during the mitotic cycle. J.Cell Biol. 21: 429–463.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Robbins, E. and Gonatas, N.K. (1964b). Histochemical and ultrastructural studies on HeLa cell cultures exposed to spindle inhibitors with special reference to the interphase cell.J. Histochem. Cytochem. 12: 704–711.CrossRefPubMedGoogle Scholar
  62. Robenek, H. and Schmitz, G. (1991) Abnormal processing of Golgi elements and lysosomes in tangier disease.Arteriosclerosis Thrombosis 11: 1007–1020.CrossRefPubMedGoogle Scholar
  63. Rogaev, E.I., Sherrington, R., Rogaeva, E.A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., Mar, L., Sorbi, S., Nacmias, B., Piacentini, S., Amaducci, L., Chumakov, I., Cohen, D., Lannfelt, L., Fraser, P.E., Rommens, J.M. and St George-Hyslop, P.H. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene.Nature 376: 775–778.CrossRefPubMedGoogle Scholar
  64. Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J.P., Deng, H.Z., Rahmani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S.M., Berger, R., Tanzi, R.E., Halperin, J.J., Herzfeld, B., Bergh, R., Van, N.G., Soriano, E., Pericak-Vance, M.A., Haines, J., Rouleau, G.A., Gusella, J.S., Horvitz, H.R. and Brown, R.H. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature 362: 59–62.CrossRefPubMedGoogle Scholar
  65. Rowland, L.P. (1991) Ten central themes in a decade of ALS research.In: L.P. Rowland (ed.):Advances in Neurology: Amyotrophic Lateral Sclerosis and other motor neuron diseases, Raven Press Ltd, pp 3–23.Google Scholar
  66. Salehi, A., Ravid, R., Gonatas, N.K. and Swaab, D.E. (1995) Decreased activity of hippocampal neurons in Alzheimer’s disease is not related to the presence of neurofibrillary tangles.J. Neuropathol. Exp. Neurol. 54: 704–709.CrossRefPubMedGoogle Scholar
  67. Seksek, O., Biwersi, J. and Verkman, A.S. (1996) Evidence against defectivetrans-Golgi acidification in cystic fibrosis.J. Biol. Chem. 271: 15542–15548.CrossRefPubMedGoogle Scholar
  68. Semenza, G. and Aurichio, S.(1995) Small-Intestinal Disaccharidases.In: C.R.Scriver (ed.):The Metabolic and Molecular Bases of Inherited Disease, Seventh Edition, McGraw-Hill, Inc., New York, pp 4451–4480.Google Scholar
  69. Selkoe, D.J. (1996) Amyloid il-Protein and the genetics of Alzheimer’s disease.J. Biol. Chem. 271: 18295–18298.CrossRefPubMedGoogle Scholar
  70. Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J.-F., Bruni, A.C., Montesi, M.P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakof, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R.J., Wasco, W., Da Silva, H.A.R., Haines, J.L., Pericac-Vance, M.A., Tanzi, R.E., Roses, A.D., Fraser, P.E., Rommens, J.M. and St George-Hyslop, P.H. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease.Nature 375: 754–760.CrossRefPubMedGoogle Scholar
  71. Steegmaier, M., Levinovitz, A., Isenmann, S., Borges, E., Lenter, M., Kocher, H.P., Kleuser, B. and Vestweber, D. (1995) The E-selectin ligand ESL-1 is a variant of a receptor for fibroblast growth factor.Nature 373: 615–620.CrossRefPubMedGoogle Scholar
  72. Stieber, A., Mourelatos, Z., Chen, Y.-J., Le Douarin, N. and Gonatas, N.K. (1995) MG160, a membrane protein of the Golgi apparatus which is homologous to a fibroblast growth factor receptor and to a ligand for E-selectin, is found only in the Golgi apparatus and appears early in chicken embryo.Exp. Cell Res. 219: 562–570.CrossRefPubMedGoogle Scholar
  73. Stieber, A., Mourelatos, Z. and Gonatas, N.K. (1996) In Alzheimer’s disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am.J. Pathol. 148: 415–426.PubMedCentralPubMedGoogle Scholar
  74. Suchy, S.F., Olivos-Glander, I.M. and Nussbaum, R.L. (1995) Lowe Syndrome, a deficiency of a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus.Hum. Molec. Genet. 4: 2245–2250.CrossRefPubMedGoogle Scholar
  75. Terry, R.D., Gonatas, N.K. and Weiss, M. (1964) Ultrastructural studies in Alzheimer’s presenile dementia.Am. J. Pathol. 44: 269–297.PubMedCentralPubMedGoogle Scholar
  76. Thinakaran, G., Teplow, D.B., Siman, R., Greenberg, B. and Sisodia, S.S. (1996) Metabolism of the “Swedish”amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that the “beta-secretase”site occurs in the Golgi apparatus.J. Biol. Chem. 271: 9390–9397.CrossRefPubMedGoogle Scholar
  77. Turner, J.R. and Tartakoff, A.M. (1989) The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in the Golgi complex organization.J. Cell Biol. 109: 2081–2088. Vincent, I., Rosado, M. and Davies, P. (1996) Mitotic mechanisms in Alzheimer’s disease?J. Cell Biol. 132: 413–425.Google Scholar
  78. von Figura, K. and Hasilik, A. (1986) Lysosomal enzymes and their receptors.Ann. Rev. Biochem. 55: 167–193.CrossRefGoogle Scholar
  79. von Figura, K., Hasilik, A. and Steckel, F. (1984) Lysosomal storage disorders caused by instability of the missing enzymes.In: J.A. Barranger and R. Brady (eds):Molecular Basis of Lysosomal Storage Disorders, Academic Press, New York, pp 133–146.CrossRefGoogle Scholar
  80. Ward, C.J., Turley, H., Ong, A.C.M., Comley, M., Biddolph, S., Chetty, R., Ratcliff, P.J., Gatter, K. and Harris, P. (1996) Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney.Proc. Natl Acad. Sci. USA. 93: 1524–1528.PubMedCentralCrossRefPubMedGoogle Scholar
  81. Welsh, M.I., Tsui, L.-C., Boat, T.F. and Beaudet, A.L. (1995) Cystic Fibrosis.In: C.R. Scriver (ed.):The Metabolic and Molecular Bases of Inherited Disease, Seventh Edition, McGraw-Hill, Inc., New York, pp 3799–3878.Google Scholar
  82. Wilson, B.S., Nuoffer, C., Meinkoth, J.L., McCaffery, M., Feramisco, J.R., Balch, W.E. and Farquhar, M.G. (1994) A rabl mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus.J. Cell Biol. 125: 557–571.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • N. K. Gonatas
    • 1
  1. 1.Department of Pathology and Laboratory Medicine, Division of NeuropathologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations