Chemokine receptors

  • Ingrid U. Schraufstätter
  • Hiroshi Takamori
  • Robert C. Hoch
Part of the Progress in Inflammation Research book series (PIR)


The chemokines exert their influence on target cells via specific G-protein-coupled receptors with seven membrane spanning domains, as predicted by hydropathy plotting. With an estimated 40 to 50 different chemokines, with several of the receptors binding multiple ligands, and with variations in target cell specificity between different species, the individual roles of these receptors are far from clear. More than a dozen putative chemokine receptors have been cloned including several orphan receptors that share sequence homology with the chemokine receptors (reviewed in [1]), but whose ligands are not yet known. These receptors share certain motives such as a DRYLAIV sequence in the second intracellular loop which appears to be involved in G-protein coupling.


Chemokine Receptor Extracellular Loop RBL2H3 Cell Formyl Peptide Receptor CXCR2 Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rollins, BJ (1997) Chemokines. Blood 90: 909–928PubMedGoogle Scholar
  2. 2.
    Holmes W, Lee J, Kuang WJ, Rice G, Wood W (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253: 1278–1280PubMedCrossRefGoogle Scholar
  3. 3.
    Murphy P, Tiffany H (1991) Cloning of complimentary DNA encoding a functional human IL-8 receptor. Science 253: 1280–1283PubMedCrossRefGoogle Scholar
  4. 4.
    Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 267: 16283–16287PubMedGoogle Scholar
  5. 5.
    Bozic C.R, Gerard N. P, Gerard C (1996) Receptor binding specificity and pulmonary gene expression of the neutrophil-activating peptide ENA-78. Am J Respir Cell Mol Biol 14: 302–308PubMedGoogle Scholar
  6. 6.
    Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationships for interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil Chemotaxis, exocytosis, and receptor binding affinities. J Biol Chem 266: 23128–23134PubMedGoogle Scholar
  7. 7.
    Moser B, Dewald B, Barella L, Schumacher C, Baggiolini M, Clark-Lewis I (1993) Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem 268: 7125–7128PubMedGoogle Scholar
  8. 8.
    Zagorski J, Wahl SM (1997) Inhibition of acute peritoneal inflammation in rats by a cytokine-induced neutrophil chemoattractant receptor antagonist. J Immunol 159: 1059–1062PubMedGoogle Scholar
  9. 9.
    Schraufstätter IU, Barrett DS, Ma M, Oades ZG, Cochrane, CG (1993) Multiple sites on IL-8 responsible for binding to a and b IL-8 Receptors. J Immunol 151: 6418–6428PubMedGoogle Scholar
  10. 10.
    Schraufstätter IU, Ma M, Oades ZG, Barrett DS, Cochrane CG (1995) The role of tyrl3 and lys 15 of IL-8 in the high affinity interaction with the A receptor. J Biol Chem 270: 10428–10431PubMedCrossRefGoogle Scholar
  11. 11.
    Hammond MEW, Shyamala V, Siani MA, Gallegos CA, Feucht PH, Abbott J, Lapointe GR, Moghadam M, Khoja H, Zakel J, Tekamp-Olsen P (1996) Receptor recognition and specificity of interleukin-8 is determined by residues that cluster near a surface-accessible hydrophobic pocket. J Biol Chem 271: 8228–8235PubMedCrossRefGoogle Scholar
  12. 12.
    Lowman HB, Slagle P H, DeForge LE, Wirth CM, Gillece-Castro BL, Bourell JH, Fair-brother WJ (1996) Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. J Biol Chem 271: 14344–14352PubMedCrossRefGoogle Scholar
  13. 13.
    Heinrich JN, O’Rourke E, Chen L, Gray H, Dorfman KS Bravo R (1994) Biological activity of the growth factor-induced cytokine N51: Structure-function analysis using N51/interleukin-8 chimeric molecules. Mol Cell Biol 14: 2849–2861PubMedGoogle Scholar
  14. 14.
    Clore G, Appella E, Yamada M, Matsushima K, Gronenborn A (1990) Three-dimensional structure of IL-8 in solution. Biochemistry 29: 1689–1696PubMedCrossRefGoogle Scholar
  15. 15.
    LaRosa GJ, Thomas K, Kaufmann ME, Mark R, White M, Taylor L, Gray G, Witt D, Navarro J (1992) Amino terminus of the interleukin-8 receptor is a major determinant of receptor subtype specificity. J Biol Chem 267: 25402–25406PubMedGoogle Scholar
  16. 16.
    Gayle RB, Sleath P, Srinivason S, Birks CW, Weerawarna KS, Cerretti DP, Kozlosky KJ, Nelson N, Vanden Bos T, Beckmann MP (1993) Importance of the amino terminus of the interleukin-8 receptor in ligand interaction. J Biol Chem 286: 7283–7289Google Scholar
  17. 17.
    Clubb RT, Omichinski J, Clore GM, Gronenborn AM (1994) Mapping the binding surface of interleukin-8 complexes with an N-terminal fragment of the type 1 human interleukin-8 receptor. Febs Lett 338: 93–97PubMedCrossRefGoogle Scholar
  18. 18.
    Attwood MR, Borkakoti N, Bottomley GA, Conway EA, Cowan I, Fallowfield AG, Handa BK, Jones PS, Keech E, Kirtland SJ, Williams G, Wilson FX (1996) Identification and characterization of an inhibitor of interleukin-8: A receptor based approach. Bioorg Med Chem Let 6: 1869–1874CrossRefGoogle Scholar
  19. 19.
    Hébert C, Chuntharapai A, Smith M, Colby T, Kim J, Horuk R (1993) Partial functional mapping of the human interleukin-8 type A receptor. J Biol Chem 268: 18549–18553PubMedGoogle Scholar
  20. 20.
    Leong SR, Kabakoff R, Hebert CA (1994) Complete mutagenesis of the extracellular domain of interleukin-8 (IL-8) Type A receptor identifies charged residues mediating IL-8 binding and signal transduction. J Biol Chem 269: 19343–19348PubMedGoogle Scholar
  21. 21.
    Hayashi S, Kurdowska A, Miller EJ, Albright ME, Girten BE, Cohen AB (1995) Synthetic hexa-and heptapeptides which inhibit IL-8 from binding to and activating human blood neutrophils. J Immunol 154: 814–824PubMedGoogle Scholar
  22. 22.
    Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem 271: 31202–31207PubMedCrossRefGoogle Scholar
  23. 23.
    Monteclaro FS, Charo IF (1996) The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-la receptor, confers chemokine selectivity. J Biol Chem 271: 19084–19092PubMedCrossRefGoogle Scholar
  24. 24.
    Farzan M, Choe H, Martin KA, Sun Y, Sidelko M, Mackay CR, Gerard NP, Sodroski J, Gerard C (1997) HIV-1 entry and macrophage inflammatory protein-lb-mediated signaling are independent functions of the chemokine receptor CCR5). J Biol Chem 272: 6854–6857PubMedCrossRefGoogle Scholar
  25. 25.
    Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legier DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line adapted HIV-1). Nature 382: 833–835PubMedCrossRefGoogle Scholar
  26. 26.
    Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382: 829–833PubMedCrossRefGoogle Scholar
  27. 27.
    Liao F, Alkhatib G, Peden KWC, Sharma G, Berger EA, Farber JM (1997) STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macro-phage-tropic and T-cell line-tropic HIV-1). J Exp Med 185: 2015–2023PubMedCrossRefGoogle Scholar
  28. 28.
    Deng H, Unutmaz D, Kewal Ramani VN, and Littman DR (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388: 296–300PubMedCrossRefGoogle Scholar
  29. 29.
    Ahuja SK, Murphy P (1993) Molecular piracy of mammalian Interleukin-8 receptor Type B by Herpesvirus Saimiri. J Biol Chem 268: 20691–20694PubMedGoogle Scholar
  30. 30.
    Cesarman E, Nador R G, Bai F, Bohenzky RA, Russo JJ, Moore PS, Chang Y, Knowles DM (1996) Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and maligant lymphoma. J Virol 70: 8218–8223PubMedGoogle Scholar
  31. 31.
    Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385: 347–350PubMedCrossRefGoogle Scholar
  32. 32.
    Gao JL, Murphy PM (1994) Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 269: 28539–28544PubMedGoogle Scholar
  33. 33.
    Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH (1993) A receptor for the malarial parasite plasmodium vivax: the erythrocyte chemo kine receptor. Science 261: 1182–1184PubMedCrossRefGoogle Scholar
  34. 34.
    Hadley TR, Lu Z, Wasniowska K, Martin AW, Peiper SC, Hesselgesser J, Horuk R (1994) Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid Isoform, which is the Duffy blood group antigen. J Clin Invest 94: 985–991PubMedCrossRefGoogle Scholar
  35. 35.
    Matsushima K, Baldwin E, Mukaida N (1992) Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines. Chem Immunol 51: 236–265PubMedCrossRefGoogle Scholar
  36. 36.
    Baggiolini M, Walz A, Kunkel S (1989) Neutrophil activating peptide/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84: 1045–1049PubMedCrossRefGoogle Scholar
  37. 37.
    Hébert C, Baker J (1993) Interleukin-8: a review. Cancer Invest 11: 743–750PubMedCrossRefGoogle Scholar
  38. 38.
    Grevai IS, Rutledge J, Fiorello JA, Gu L, Gladue RP, Flavell RA, Rollins BJ (1997) Transgenic monocyte attractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: Abrogation by a second transgene expressing systemic MCP-1). J Immunol 159: 401–409Google Scholar
  39. 39.
    Goodman RB, Strieter RM, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR (1995) Correlation of BALF cytokine levels with inflammatory cell populations in ARDS. Am J Resp Crit Care Med 151: A78Google Scholar
  40. 40.
    Schröder J, Mrowietz U, Morita E, Christophers E (1987) Purification and partial biochemical characterization of a human monocyte-derived, neutrophil activating peptide that lacks interleukin 1 activity. J Immunol 139: 3474–3483PubMedGoogle Scholar
  41. 41.
    Broaddus VC, Boylan A, Hoeffel JM, Kim KJ, Sadick M, Chuntharapai A, Hebert CA (1994) Neutralization of IL-8 inhibits neutrophil influx in a rabbit model of endotoxin-induced pleurisy. J Immunol 152: 2960–2967PubMedGoogle Scholar
  42. 42.
    Folkesson HG, Matthay MA, Hebert CA, Broaddus VC (1995) Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest 96: 107–116PubMedCrossRefGoogle Scholar
  43. 43.
    Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K (1993) Prevention of lung reperfusion injury in rabbits by monoclonal antibody against interleukin-8. Nature 365: 655–657CrossRefGoogle Scholar
  44. 44.
    Norgauer J, Krutmann J, Dobos GJ, Traynor-Kaplan AE, Oades ZG, Schraufstätter IU (1994) Actin polymerization, calcium-transients, and phospholipid metabolism in human neutrophils after stimulation with interleukin-8 and N-formyl peptide. J Invest Dermatol 102: 310–314PubMedCrossRefGoogle Scholar
  45. 45.
    Ahuja SK, Lee JC, Murphy PM (1996) CXC chemokines bind to unique sets of selectivity determinants that can function independentlt and are broadly distributed on multiple domains of human interleukin-8 receptor B. J Biol Chem 271: 225–222PubMedCrossRefGoogle Scholar
  46. 46.
    Thelen M, Peveri P, Kernen P, von Tscharner V, Walz A, Baggiolini M (1988) Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide antagonist FASEB J 2: 2702–2706PubMedGoogle Scholar
  47. 47.
    Damaj BB, McColl SR, Mahana W, Crouch MF, Naccache PH (1996) Physical association of Gi2a with interleukin-8 receptors. J Biol Chem 271: 12783–12789PubMedCrossRefGoogle Scholar
  48. 48.
    Wu D, LaRosa G J, Simon MI (1993) G-protein-coupled signal transduction pathways for interleukin-8. Science 261: 101–103PubMedCrossRefGoogle Scholar
  49. 49.
    Arai H, Charo IF (1996) Differential regulation of G-protein-mediated signaling by chemokine receptors. J Biol Chem 271: 21814–21819PubMedCrossRefGoogle Scholar
  50. 50.
    Chuntharapai A, Lee J, Hebert CA, Kim KJ (1994) Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol 153: 5682–5688PubMedGoogle Scholar
  51. 51.
    Hammond MEW, Lapointe GR, Feucht PH, Hilt S, Gallegos CA, Gordon CA, Giedlin MA, Mullenbach G, Tekamp-Olsen P (1995) IL-8 induces neutrophil Chemotaxis predominantly via type I IL-8 receptors. J Immunol 155: 1428–1433PubMedGoogle Scholar
  52. 52.
    Richmond A, Balantien H, Thomas H, Flaggs G, Barton D, Spiess J, Bordoni R, Francke U, Derynck R (1989) Molecular characterization of melanoma growth stimulatory activity, a growth factor structurally related to ß-thromboglobulin. EMBO J 7: 2025–2033Google Scholar
  53. 53.
    Norgauer J, Metzner B, Schraufstätter I (1996) Expression and growth-promoting function of the IL-8 receptor b in human melanoma cells. J Immunol 156Google Scholar
  54. 54.
    Koch AE, Polverini P, Kunkel SL, Harlow LA, DiPietro LA, Einer VM, Einer SG, Stricter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 158:1798–1801CrossRefGoogle Scholar
  55. 55.
    Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM (1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97: 2792–2802PubMedCrossRefGoogle Scholar
  56. 56.
    Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick D, Kasper J, Dzuiba J, Van Dame J, Walz A, Marriott D, Chan SY, Roczniak S, Shanafel AB (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270: 27348–27357PubMedCrossRefGoogle Scholar
  57. 57.
    Nanney LB, Mueller SG, Bueno R, Peiper SC, Richmond A (1995) Distributions of melanoma growth stimulatory activity of growth-regulated gene and the interleukin-8 receptor in human wound repair. Am J Pathol 147: 1248–1260PubMedGoogle Scholar
  58. 58.
    Förster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of teh spleen. Cell 87: 1037–1047PubMedCrossRefGoogle Scholar
  59. 59.
    Broxmeyer HE, Sherry B, Cooper S, Lu L, Maze R, Beckmann MP, Cerami A, Ralph P (1993) Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J Immunol 150: 3448–3455PubMedGoogle Scholar
  60. 60.
    Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Nature 265: 682–684Google Scholar
  61. 61.
    Norgauer J, Metzner B, Schraufstätter I (1996) Expression and growth promoting function of the IL-8 receptor B in human melanoma cells. J Immunol 156: 1132–1137PubMedGoogle Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Ingrid U. Schraufstätter
    • 1
  • Hiroshi Takamori
    • 2
  • Robert C. Hoch
    • 1
  1. 1.Dept. of ImmunologyThe Scripps Research InstituteLa JollaUSA
  2. 2.Dept. of SurgeryKumamoto UniversityKumamotoJapan

Personalised recommendations