Advertisement

Reactive Oxygen and Reactive Nitrogen Species in the Lung

  • Gregory J. Quinlan
  • Nicholas J. Lamb
Chapter
  • 71 Downloads
Part of the Respiratory Pharmacology and Pharmacotherapy book series (RPP)

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated as contributing to the pathogenesis of a broad spectrum of diseases [1, 2]. Historically, oxygen free radicals were primarily considered to be aggressive species, indeed the superoxide (O 2 .- theory of oxygen toxicity is based on this hypothesis, (reviewed in 3). There is circumstantial evidence to support this view, some of which will be reviewed elsewhere in this chapter. However, other roles for free radicals — or more appropriately ROS and RNS — have recently emerged, most notably as signal or second messenger molecules. It seems therefore that these species can have differing effects which are dependent on their levels of production and on antioxidant defences. This chapter will mainly be concerned with the deleterious consequences associated with these reactive species, particularly in the lung, with special reference to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).

Keywords

Nitric Oxide Chronic Obstructive Pulmonary Disease Lung Injury Acute Lung Injury Idiopathic Pulmonary Fibrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gutteridge JMC (1993) Free radicals in disease processes: a complication of cause and consequence. Free Rad Res 19: 141–158CrossRefGoogle Scholar
  2. 2.
    Muijsers RBR, Folkerts G, Henricks PAJ, Sadeghi-Hashjin G, NijKamp FP (1997) ON00-: a two-faced metabolite of nitric oxide. Life Sci 60: 1833–1845PubMedCrossRefGoogle Scholar
  3. 3.
    Bannister WH, Bannister JV (1988) Isolation and characteristation of superoxide dismutase: a personal history and tribute to Joe McCord and Irwin Fridovich. Free Rad Biol Med 5: 371–376PubMedCrossRefGoogle Scholar
  4. 4.
    Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186: 1–85PubMedCrossRefGoogle Scholar
  5. 5.
    Beckman JS, Beckman TW, Chan J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from and superoxide. Proc Nat Acad Sci 87: 1620–1624PubMedCrossRefGoogle Scholar
  6. 6.
    Candeias LP, Patel KB, Stratford MR, Wardman P (1993) Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Letts 33: 151–153CrossRefGoogle Scholar
  7. 7.
    Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268: L699–L722PubMedGoogle Scholar
  8. 8.
    Candeias LP, Stratford MR, Wardman P (1994) Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron (II) complex. Free Rad Res 20: 241–249CrossRefGoogle Scholar
  9. 9.
    Doelman CJ, Bast A (1990) Oxygen radicals in lung pathology. Free Rad Bio Med 9: 381–400CrossRefGoogle Scholar
  10. 10.
    Hanley N, Kozumbo W, Costa D et al (1993) Induction of DNA single strand breaks in lung cells by ozone exposure in vivo and in vitro. Am Rev Respir Dis 147: A670Google Scholar
  11. 11.
    Cross CE, Motchnik PA, Bruener BA, Jones DA, Kaur H, Ames BN, Halliwell B (1992) Oxidative damage to plasma constituents by ozone. FEBS Letts 298: 269–272CrossRefGoogle Scholar
  12. 12.
    Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376PubMedCrossRefGoogle Scholar
  13. 13.
    Heinecke JW, Li W, Francis GA, Goldstein JA (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91: 2866–2872PubMedCrossRefGoogle Scholar
  14. 14.
    van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) Formation of reactive nitrogen species during peroxidase-catalysed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. JBiol Chem 272: 7617–7625CrossRefGoogle Scholar
  15. 15.
    Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated modification. JBiol Chem 271: 19199–19208CrossRefGoogle Scholar
  16. 16.
    Rawls H, Van Santen P (1997) Singlet oxygen: A possible source of the original hydro-peroxides in fatty acids. Ann NY Acad Sci 171: 135–137CrossRefGoogle Scholar
  17. 17.
    Cueto R, Squadrito GL, Bermudez E, Pryor WA (1992) Identification of heptanal and nonenal in bronchoalveolar lavage from rats exposed to low levels of ozone. Biochem Biophys Res Comm 188: 129–134PubMedCrossRefGoogle Scholar
  18. 18.
    Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487PubMedCrossRefGoogle Scholar
  19. 19.
    Panasenko OM, Evgina SA, Aidyraliev RK, Sergienko VI, Vladimrov YA (1994) Peroxidation of human blood lipoproteins induced by exogenous hypochlorite or hypochlorite generated in the system of myloperoxidase +H2O2+Cl-. Free Rad Biol Med 16: 143–148PubMedCrossRefGoogle Scholar
  20. 20.
    Fukahori M, Ichimori K, Ishida H, Nakagawa H, Okino H (1994) Nitric oxide reversibly suppresses xanthine oxidase activity. Free Rad Res 21: 203–212CrossRefGoogle Scholar
  21. 21.
    Brooks EC, Mahr NN, Radisavljevic Z, Jacobson ED, Terada LS (1997) Attenuates and xanthine oxidase exaggerates lung damage-induced gut injury. Am J Physiol 272: G845–G852PubMedGoogle Scholar
  22. 22.
    Strand V, Rak S, Svartengren M, Bylin G (1997) Nitrogen dioxide exposure enhances asthmatic reaction to inhaled allergen in subjects with asthma. Am J Respir Crit Care Med 155: 881–887PubMedGoogle Scholar
  23. 23.
    Beckman J, Tsai J-H (1994) Reactions and diffusion of nitric oxide and peroxynitrite. The Biochemist Oct/Nov 8–10Google Scholar
  24. 24.
    Blough N, Zafiriou O (1985) Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solutions. Inorg Chem 24: 3502–3504CrossRefGoogle Scholar
  25. 25.
    Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitritemediated cellular injury. Proc Natl Acad Sci USA 93: 6770–6774PubMedCrossRefGoogle Scholar
  26. 26.
    Radi R, Beckman JS, Bush K, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. JBiol Chem 266: 4244–4250Google Scholar
  27. 27.
    Gatti RM, Radi R, Augusto O (1994) Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Letts 348: 287–290CrossRefGoogle Scholar
  28. 28.
    Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite mediated tyrosine nitration catalysed by superoxide dismutase. Arch Biochem Biophys 298: 431–437PubMedCrossRefGoogle Scholar
  29. 29.
    Rubbo AB, Barnes KM, Freeman BA, Radi R (1996) Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol 9: 390–396PubMedCrossRefGoogle Scholar
  30. 30.
    Butler AR, Rhodes P (1997) Chemistry, analysis, and biological roles of S-nitrosothiols. Anal Biochem 249: 1–9PubMedCrossRefGoogle Scholar
  31. 31.
    Singh RJ, Hogg N, Joseph J, Kalyanaraman B (1996) Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271: 18596–18603PubMedCrossRefGoogle Scholar
  32. 32.
    Davidson CA, Kaminski PM, Wolin MS (1997) NO elicits prolonged relaxation of bovine pulmonary arteries via endogenous peroxynitrite generation. Am J Physiol 273: L437–L444PubMedGoogle Scholar
  33. 33.
    Guidot DM, Repine MJ, Hybertson BM, Repine JE (1995) Inhaled nitric oxide prevents neutrophil-mediated, oxygen radical-dependent leak in isolated rat lungs. Am J Physiol 269: L2–5PubMedGoogle Scholar
  34. 34.
    Gutierrez HH, Nieves B, Chumley P, Rivera A, Freeman BA (1996) Nitric oxide regulation of superoxide-dependent lung injury: oxidant-protective actions of endogenously produced and exogenously administered nitric oxide. Free Rad Biol Med 21: 43–52PubMedCrossRefGoogle Scholar
  35. 35.
    Nossuli TO, Reid H, Scalia R, Lefer AM (1997) Peroxynitrite reduces myocardial infarct size and preserves coronary endothelium after ischemia and reperfusion in cats. Circulation 96: 2317–2324PubMedCrossRefGoogle Scholar
  36. 36.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al (1994) The American-European consensus on ARDS. Am J Respir Crit Care Med 149: 818–824PubMedGoogle Scholar
  37. 37.
    Pittet JF, Mackersie RC, Martin TR, Matthay MA (1997) Biological markers of acute lung injury: prognostic and pathogenic significance. Am J Respir Crit Care Med 155: 1187–1205PubMedGoogle Scholar
  38. 38.
    Gerschman R, Gilbert D, Nye Set al (1954) Oxygen poisioning and x-radiation: A mechanism in common. Science 199: 623–626CrossRefGoogle Scholar
  39. 39.
    Jackson R (1990) Molecular, pharmacologic, and clinical aspects of oxygen induced lung injury. Clin Chest Med 1: 73–86Google Scholar
  40. 40.
    Cross CE, Van der Viliet A, O’Neill C, Eiserich J (1994) Reactive oxygen species and the lung. Lancet 344: 930–933PubMedCrossRefGoogle Scholar
  41. 41.
    Deneke S, Fanburg B (1980) Normobaric oxygen toxicity of the lung. N Engl J Med 303: 76–86PubMedCrossRefGoogle Scholar
  42. 42.
    Balaan M, Bowman L, Dedhia H, Miles P (1995) Hyperoxia-induced alterations of rat alveolar lavage composition and properties. Exp Lung Res 21: 141–156PubMedCrossRefGoogle Scholar
  43. 43.
    Clerch L, Massaro D (1993) Tolerance of rats to hyperoxia: Lung antioxidant enzyme gene expression. J Clin Invest 91: 499–508PubMedCrossRefGoogle Scholar
  44. 44.
    Frank L, Summerville J, Massaro D (1980) Protection from oxygen toxicity with endotoxin. Role of the endogenous antioxidant enzymes of the lung. J Clin Invest 65: 1104–1110PubMedCrossRefGoogle Scholar
  45. 45.
    White C, Ghezzi P, Dinarello C, Caldwell S, McMurty I, Repine J (1987) Recombinant tumour necrosis factor/cachectin and interleukin 1 pretreatment decreases lung oxidised glutathione accumulation, lung injury and mortality in rats exposed to hyperoxia. J Clin Invest 79: 1868–1873PubMedCrossRefGoogle Scholar
  46. 46.
    Erzurum S, Danel C, Gillssen A, Chu CS, Trapnell BC, Crystal RG (1993) In vivo antioxidant gene expression in human airway epithelium of normal individuals exposed to 100% oxygen. J Appl Physiol 75: 1256–1262PubMedGoogle Scholar
  47. 47.
    Fleming R, Whitman I, Gitlin J (1991) Induction of caeruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am J Physiol 260: L68–L74PubMedGoogle Scholar
  48. 48.
    Town I, Phillips G, Murdoch E, Holgate S, Kelly F (1993) Temporal association between pulmonary inflammation and antioxidant induction following hyperoxic exposure of the preterm guinea-pig. Free Rad Res Communs 18: 211–223CrossRefGoogle Scholar
  49. 49.
    Nozik-Grayck E, Piantadosi CA, van Adelsberg J, Alsper SL, Huang YC (1997) Protection of perfused lung from oxidant injury by inhibitors of anion exchange. Am J Physiol 273: L296–L304PubMedGoogle Scholar
  50. 50.
    McCord J (1985) Oxygen-derived free radicals in postischaemic tissue injury. N Engl J Med 312: 159–163PubMedCrossRefGoogle Scholar
  51. 51.
    Ferrari R (1994) Oxygen free radicals at myocardial level: effects of ischaemia and re-perfusion. In: Armstrong D (ed). Free radicals in diagnostic medicine. A systems approach to laboratory technology, clinical correlations, and antioxidant therapy. New York and London: Plenum Press, 99–122Google Scholar
  52. 52.
    Granger D, Hollwarth M, Parks D (1986) Ischaemia-reperfusion injury: Role of oxygen derived free radicals. Physiol Scand Suppl 548: 47–63Google Scholar
  53. 53.
    Ward A, McBurney A, Lunec J (1994) Evidence for the involvement of oxygen-derived free radicals in ischaemia-reperfusion injury. Free Rad Res 20: 21–28CrossRefGoogle Scholar
  54. 54.
    Parks D, Granger N (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand 54: 87–99Google Scholar
  55. 55.
    Wakabayashi Y, Fujita H, Morita I, Kawagushi H, Murota S (1995) Conversion of xanthine oxidase in bovine carotid artery endothelial cells induced by activated neutrophils: involvement of adhesion molecules. Biochim Biophys Acta 1265: 103–109PubMedCrossRefGoogle Scholar
  56. 56.
    Xia Y, Zweier JL (1995) Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem 270: 18797–18803PubMedCrossRefGoogle Scholar
  57. 57.
    Quinlan GJ, Lamb NJ, Tilly R, Evans TW, Gutteridge JMC (1997) Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity and mortality. Am J Respir Crit Care Med 155: 479–484PubMedGoogle Scholar
  58. 58.
    Grum C, Ragsdale R, Ketani L, Simon R (1987) Plasma xanthine oxidase activity in patients with adult respiratory distress syndrome. J Crit Care 2: 22–26CrossRefGoogle Scholar
  59. 59.
    Tate R, Vanbenthuysen K, Shasby D, McMurtry IF, Repine JE (1982) Oxygen radical mediated permeability oedema and vasoconstriction in isolated perfused rabbit lungs. Am Rev Respir Dis 126: 802–806Google Scholar
  60. 60.
    Johnson K, Fantone J, Kaplan J, Ward PA (1981) In vivo damage of rat lungs by oxygen metabolits. J Clin Invest 67: 983–993PubMedCrossRefGoogle Scholar
  61. 61.
    Faggioni R, Gatti S, Demitri M, Delgado R, Echtenacher B, Gnocchi P et al (1994) Role of xanthine oxidase and reactive oxygen intermediates in LPS and TNF-induced pulmonary oedema. J Lab Clin Med 123: 394–399PubMedGoogle Scholar
  62. 62.
    Kurosaki M, Li Calzi M, Scanziani E, Garattini E, Terao M (1995) Tissue-and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: Regulation by bacterial LPS. Biochem J 306: 225–234PubMedGoogle Scholar
  63. 63.
    Sarnesto A, Linder N, Raivio KO (1996) Organ distribution and molecular forms of human xanthine dehydrogenase/xanthine oxidase protein. Lab Invest 74: 48–56PubMedGoogle Scholar
  64. 64.
    Adachi T, Fukushima T, Usami Y, Hirano K (1993) Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J 89: 523–527Google Scholar
  65. 65.
    Nielsen VG, Tan S, Weinbroum A, McCammon AT, Samuelson PN, Gelman S et al (1996) Lung injury after hepatoenteric Ischemia-reperfusion injury: role of xanthine oxidase. Am J Respir Crit Care Med 154: 1364–1369PubMedGoogle Scholar
  66. 66.
    Phan S, Gannon D, Varani J, Ryan U, Ward P (1989) Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils. Am J Pathol 134: 1201–1211PubMedGoogle Scholar
  67. 67.
    Zweier J, Kuppusamy P, Thompson-Gorman S, Klunk D, Lutty G (1994) Measurement and characterisation of free radical generation in reoxygenated human endothelial cells. Am J Physiol 266: C700–C708PubMedGoogle Scholar
  68. 68.
    Ward P (1991) Mechanisms of endothelial cell injury. J Lab Clin Med 118: 421–426PubMedGoogle Scholar
  69. 69.
    Till G, Friedl H, Ward P (1991) Lung injury and complement activation: Role of neutrophils and xanthine oxidase. Free Rad Biol Med 10: 379–386PubMedCrossRefGoogle Scholar
  70. 70.
    Moores H, Beehler C, Hanley M, Shanley PF, Stevens EE, Repine JE et al (1994) Xanthine oxidase promotes neutrophil sequestration but not injury in hyperoxic lungs. J Appl Physiol 76: 941–945PubMedGoogle Scholar
  71. 71.
    Shenkar R, Abraham E (1996) Plasma from hemorrhaged mice activates CREB and increases cytokine expression in lung mononuclear cells through a xanthine oxidasedependent mechanism. Am J Respir Cell Mol Biol 14: 198–206PubMedGoogle Scholar
  72. 72.
    Shenkar R, Schwartz MD, Terada LS, Repine JE, McCord J, Abraham E (1996) Hemorrage activates NK-kappa B in murine lung mononuclear cells in vivo. Am J Physiol 270: L729–735PubMedGoogle Scholar
  73. 73.
    Babior B (1984) The respiratory burst of phagocytes. J Clin Invest 73: 599–601PubMedCrossRefGoogle Scholar
  74. 74.
    Thannickal VJ, Fanburg BL (1995) Activation of H2O2 — generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270: 30334–30338PubMedCrossRefGoogle Scholar
  75. 75.
    Kelly F, Rickett G, Philips G (1992) Magnitude of hyperoxic stress and degree of lung maturity determine the nature of pulmonary antioxidant response in the guinea-pig. Free Rad Res Communs 17: 335–347CrossRefGoogle Scholar
  76. 76.
    Wizemann T, Laskin D (1994) Enhanced phagocytosis, chemotaxis, and production of reactive oxygen intermediates by interstitial lung macrophages following acute endotoxemia. Am J Respir Cell Mol Biol 11: 358–365PubMedGoogle Scholar
  77. 77.
    Wang W, Suzuki Y, Tanigaki T, Rank D, Raffin T (1994) Effect of the NADPH oxidase inhibitor apocynin on septic lung injury in guinea-pigs. Am J Respir Crit Care Med 150: 1449–1452PubMedGoogle Scholar
  78. 78.
    Wyman M, Tscharner V, Deranleau D, Baggiolini M (1987) Chemiluminescence detection of hydrogen peroxide produced by human neutrophils during the respiratory burst. Anal Biochem 165: 371–378CrossRefGoogle Scholar
  79. 79.
    Baldwin S, Simon R, Grum C, Ketai LH, Boxer LA, Devall LJ et al (1986) Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet 1: 11–14PubMedCrossRefGoogle Scholar
  80. 80.
    Sznajder J, Fraiman A, Hall J, Sanders SW, Schmidt G, Crawford G et al (1989) Increased hydrogen peroxide in the expired breath of patients with acute hypoxemic respiratory failure. Chest 96: 602–612CrossRefGoogle Scholar
  81. 81.
    Mathru M, Rooney M, Dries D, Hirsch LJ, Barnes L, Tobin MJ et al (1994) Urine hydrogen peroxide during adult respiratory distress syndrome in patients with and without sepsis. Chest 105: 232–236PubMedCrossRefGoogle Scholar
  82. 82.
    Sibille Y, Reynolds H (1990) Macrophages and polymorphonuclear neutrophils in lung defence and injury. Am Rev Respir Dis 141: 471–501PubMedGoogle Scholar
  83. 83.
    Gutteridge JMC, Mumby S, Quinlan GJ, Chung KF, Evans TW (1996) Pro-oxidant iron is present in human pulmonary epithelial lining fluid: implications for oxidative stress in the lung. Biochem Biophys Res Communs 220: 1024–1027CrossRefGoogle Scholar
  84. 84.
    Lamb NJ, Gutteridge JMC, Baker CS, Evans TW, Quinlan GJ (1999) Oxidative damage to proteins of bronchoalveolar lavage fluid protein in patients with ARDS. Evidence for neutrophil mediated hydroxylation, nitration and chlorination. Crit Care Med in pressGoogle Scholar
  85. 85.
    Demling H, Lalonde C, Jin L, Ryan P, Fox R (1986) Endotoximia causes increased lung tissue lipid peroxidation in unanesthetized sheep. J Appl Physiol 60: 2094–2100PubMedGoogle Scholar
  86. 86.
    Ward PA, Till GO, Hatherill JR, Annesley TM, Kunkel R (1985) Systemic complement activation, lung injury, and the products of lipid peroxidation. J Clin Invest 76: 517–527PubMedCrossRefGoogle Scholar
  87. 87.
    Richard C, Lemonnier F, Thibault M, Couturier M, Auzepy P (1990) Vitamin E deficiency and lipperoxidation during adult respiratory syndrome. Crit Care Med 18: 4–9Google Scholar
  88. 88.
    Lefevre G, Brunet F, Bonneau C et al (1994) Human polymorphonuclear leukocyte metabolism and lipopreoxidation during adult respiratory distress syndrome treated by extracorporeal carbon dioxide removal. Pathophysiology 1: 13–19CrossRefGoogle Scholar
  89. 89.
    Baouali AB, Aube H, Maupoil V, Blettery B, Rochette L (1994) Plasma lipid peroxidation in critically ill patients: importance of mechanical ventilation. Free Rad Biol Med 16: 223–227PubMedCrossRefGoogle Scholar
  90. 90.
    Esterbauer H, Schauer R, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11: 81–128PubMedCrossRefGoogle Scholar
  91. 91.
    Schaur RJ, Dussing G, Kink E, Schauenstein E, Posch W, Kukovetz E et al (1994) The lipid peroxidation product 4-hydroxy-2-nonenal is formed by — and is able to attract — rat neutrophils in vivo. Free Rad Res 20: 365–373CrossRefGoogle Scholar
  92. 92.
    Quinlan GJ, Lamb NJ, Evans TW, Gutteridge JMC (1996) Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome. Crit Care Med 24: 241–246PubMedCrossRefGoogle Scholar
  93. 93.
    Olafsdottir K, Ryrfeldt A, Atzori L, Berggren M, Moldeus P (1991) Hydroperoxideinduced broncho-and vasoconstriction in the isolated rat lung. Exp Lung Res 17: 615–627PubMedCrossRefGoogle Scholar
  94. 94.
    Pacifici E, Mcleod L, Peterson H, Sevanian A (1994) Linoleic acid hydroperoxide-induced peroxidation of endothelial cell phospholipids and cytotoxicity. Free Rad Biol Med 17: 285–295PubMedCrossRefGoogle Scholar
  95. 95.
    Pacifici E, Mcleod L, Sevanian A (1994) Lipid hydroperoxide-induced peroxidation and turnover of endothelial phospholipids. Free Rad Biol Med 17: 297–309PubMedCrossRefGoogle Scholar
  96. 96.
    Vissers CM, Thomas C (1997) Hypochlorous acid disrupts the adhesive properties of subendothelial matrix. Free Rad Biol Med 23: 401–411PubMedCrossRefGoogle Scholar
  97. 97.
    Merritt A, Amirkanian J, Helbock H, Halliwell B, Cross C (1993) Reduction of the surfacetension-lowering ability of surfactant after exposure to hypochlorous acid. Biochem J 295: 19–22PubMedGoogle Scholar
  98. 98.
    Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD et al (1992) Peroxynitrite mediated tyrosine nitration catalysed by superoxide dismutase. Arch Biochem Biophys 298: 431–437PubMedCrossRefGoogle Scholar
  99. 99.
    Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitirte reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333: 49–58CrossRefGoogle Scholar
  100. 100.
    Pryor WA, Lemercier JN, Zhang H, Uppu RM, Squadrito GL (1997) The catalytic role of carbon dioxide in the decomposition of peroxynitrite. Free Rad Biol Med 23: 331–338PubMedCrossRefGoogle Scholar
  101. 101.
    Ischiropoulos H, Zhu L, Beckman J (1992) Peroxynitirte formation from activated rat alveolar macrophages. Arch Biochem Biophys 298: 446–451PubMedCrossRefGoogle Scholar
  102. 102.
    Carreras M, Pargament G, Catz S, Poderoso J, Boveris A (1994) Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Letts 341: 65–68CrossRefGoogle Scholar
  103. 103.
    Kooy N, Royall J (1994) Antagonist-Induced peroxynitrite production by endothelial cells. Arch Biochem Biophys 310: 353–359CrossRefGoogle Scholar
  104. 104.
    Kooy N, Royall J, Ye Y, Kelly D, Beckman J (1995) Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med 151: 1250–1254PubMedGoogle Scholar
  105. 105.
    Radi R, Beckman J, Bush K, Freeman B (1991) Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487PubMedCrossRefGoogle Scholar
  106. 106.
    Radi R, Beckman J, Bush K, Freeman B (1991) Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4244–4250PubMedGoogle Scholar
  107. 107.
    Haddad IY, Zhu S, Ischiropoulos H, Matalon S (1996) Nitration of surfactant protein A results in decreased ability to aggregate lipids. Am J Physiol 270: L281–L288PubMedGoogle Scholar
  108. 108.
    Zhu S, Haddad IY, Matalon S (1996) Nitration of surfactant protein A (SP-A) tyrosine residues results in decreased mannose binding ability. Arch Biochem Biophys 333: 282–290PubMedCrossRefGoogle Scholar
  109. 109.
    Hu P, Ischiropoulos H, Beckman JS, Matalon S (1994) Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am J Physiol 266: L628–L634PubMedGoogle Scholar
  110. 110.
    Haddad IY, Zhu S, Crow J, Barefield E, Gadilhe T, Matalon S (1996) Inhibition of alveolar type II cell ATP and surfactant synthesis by nitric oxide. Am J Physiol 270: L898–L906PubMedGoogle Scholar
  111. 111.
    Matalon S, DeMarco V, Haddad IY, Myles C, Skimming JW, Schurch S et al (1996) Inhaled nitric oxide injures the pulmonary surfactant systems of lambs in vivo. Am J Physiol 270: L273–L280PubMedGoogle Scholar
  112. 112.
    Kresek-Staples J, Kew R, Webster R (1992) Caeruloplasmin and transferrin levels are altered in serum and bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am Rev Respir Dis 145: 1009–1015CrossRefGoogle Scholar
  113. 113.
    Gutteridge JMC, Quinlan GJ, Mumby S, Heath A, Evans TW (1994) Primary plasma antioxidants in adult respiratory distress syndrome patients: Changes in iron-oxidising, iron-binding, and free radical-scavenging proteins. J Lab Clin Med 124: 263–273PubMedGoogle Scholar
  114. 114.
    Gutteridge JMC, Quinlan GJ, Evans TW (1994) Transient iron-overload with bleomycindetectable iron in the plasma of patients with adult respiratory distress syndrome. Thorax 49: 707–710PubMedCrossRefGoogle Scholar
  115. 116.
    Conelly KG, Moss M, Parsons PE, Moore EE, Moore FA, Giclas PC et al (1997) Serum ferritin as a predictor of the acute respiratory distress syndrome. Am J Respir Crit Care Med 155: 21–25Google Scholar
  116. 117.
    O’Neill C, Halliwell B, van der Vliet A, Davis PA, Packer L, Tritschler H et al (1994) Aldehyde-induced protein modifications in human plasma: Protection by glutathione and dihydrolipoic acid. J Lab Clin Med 124: 359–370PubMedGoogle Scholar
  117. 118.
    Bunnell E, Pacht ER (1993) Oxidised glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis 148: 1174–1178PubMedGoogle Scholar
  118. 119.
    Quinlan GJ, Evans TW, Gutteridge JMC (1994) Oxidative damage to plasma proteins in adult respiratory distress syndrome. Free Rad Res 20: 289–298CrossRefGoogle Scholar
  119. 120.
    Cross C, Forte T, Stocker R, Louie S, Yamamoto Y, Ames BN et al (1990) Oxidative stress and abnormal cholesterol metabolism in patients with adult respiratory distress syndrome. J Lab Clin Med 115: 396–404PubMedGoogle Scholar
  120. 121.
    Leff J, Parson P, Day C, Taniguchi N, Jochum M, Fritz H et al (1993) Serum antioxidants as predictors of adult respiratory distress syndrome in patients with sepsis. Lancet 341: 777–780PubMedCrossRefGoogle Scholar
  121. 122.
    Bernard GR, Wheeler AP, Arons MM, Moris PE, Paz HL, Russell JA et al (1997) A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The antioxidant in ARDS study group. Chest 112: 164–172PubMedCrossRefGoogle Scholar
  122. 123.
    Dekhuijzen PN, Aben KK, Dekker I, Aarts LP, Wielders PL, van Herwaarden CL et al (1996) Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154: 813–816PubMedGoogle Scholar
  123. 124.
    Calhoun WJ, Bush RK (1990) Enhanced reactive oxygen species metabolism of airspace cells and airway inflammation follow antigen challenge in human astham. J Allergy Clin Immunol 86: 306–313PubMedCrossRefGoogle Scholar
  124. 125.
    Repine JE, Bast A, Lankhorst I (1997) Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med 156: 341–357PubMedGoogle Scholar
  125. 126.
    Pinamonti S, Muzzoli M, Chicca MC, Papi A, Ravenna F, Fabbri LM et al (1996) Xanthine oxidase activity in bronchoalveolar lavage fludi from patients with chronic obstructive pulmonary disease. Free Radic Biol Med 21: 147–155PubMedCrossRefGoogle Scholar
  126. 127.
    Smith LJ, Shamsuddin M, Sporn PH, Denenberg M, Anderson J (1997) Reduced superoxide dismutase in lung cells of patients with astham. Free Radic Biol Med 22: 1301–1307PubMedCrossRefGoogle Scholar
  127. 128.
    Kadrabova J, Mad’aric A, Kovacikova Z, Podivinsky F, Ginter E, Gazdik F (1996) Selenium status is decreased in patients with intrinsic asthma. Biol Trace Elem Res 52: 241–248PubMedCrossRefGoogle Scholar
  128. 129.
    Hamid Q, Springall DR, Riveros-Moreno V, Chanez P, Howarth P, Redington A et al (1993) Induction of nitric oxide synthase in asthma. Lancet 342: 8886–8887CrossRefGoogle Scholar
  129. 130.
    Li XY, Gilmour PS, Donaldson K, MacNee W (1996) Free radical activity and proinflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 51: 1216–1222PubMedCrossRefGoogle Scholar
  130. 131.
    Brown RK, Wyatt H, Price JF, Kelly FJ (1996) Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 9: 334–339PubMedCrossRefGoogle Scholar
  131. 132.
    Brown RK, McBurney A, Lunec J, Kelly FJ (1995) Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 18: 801–806PubMedCrossRefGoogle Scholar
  132. 133.
    Saleh D, Barnes PJ, Giaid A (1997) Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 155: 1763–1769PubMedGoogle Scholar
  133. 134.
    Ali S, Jain SK, Abdulla M, Athar M (1996) Paraquat induced DNA damage by reactive oxygen species. Biochem Mol Biol Int 39: 63–67PubMedGoogle Scholar
  134. 135.
    Sarafian TA, Bredesen DE (1994) Is apoptosis mediated by reactive oxygen species? Free Radic Res 21: 1–8PubMedCrossRefGoogle Scholar
  135. 136.
    Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS et al (1993) Bc1–2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277PubMedCrossRefGoogle Scholar
  136. 137.
    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Corsmeyer SJ (1993) Bc1–2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251PubMedCrossRefGoogle Scholar
  137. 138.
    Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24: 203–214PubMedCrossRefGoogle Scholar
  138. 139.
    Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10: 709–720PubMedGoogle Scholar
  139. 140.
    Abate C, Patel L, Rauscher FJ, Curran T (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science 249: 1157–1161PubMedCrossRefGoogle Scholar
  140. 141.
    Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci 87: 9943–9947PubMedCrossRefGoogle Scholar
  141. 142.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-ic B transcription factor and HIV-1. EMBO J 10: 2247–2258PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2000

Authors and Affiliations

  • Gregory J. Quinlan
    • 1
  • Nicholas J. Lamb
    • 1
  1. 1.National Heart and Lung Institute at Imperial CollegeUnit of Critical Care, Royal Brompton HospitalLondonUK

Personalised recommendations