Advertisement

Isolated Singularities of Harmonic Functions

  • Lavi Karp
  • Harold S. Shapiro
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

The main result of this paper gives a sufficient condition for removability of an isolated singularity of a harmonic function. The condition is given in terms of Newtonian capacity. In addition, an application to an approximation problem is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Berenstein, R. Gay: Complex Variables, Springer, New York, 1997.Google Scholar
  2. 2.
    W. K. Hayman, L. Karp, H. S. Shapiro: Newtonian capacity and quasi balayage, Rend. Mat. Appl. 20, no. 7 (2000), 93–129.zbMATHMathSciNetGoogle Scholar
  3. 3.
    U. Kuran: n—Dimensional extensions of theorems on conjugate functions, Proc. London Math. Soc. 15, no. 3 (1965), 713–730.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    N. S. Landkof: Foundation of Modern Potential Theory, Springer, Berlin, 1972.CrossRefGoogle Scholar
  5. 5.
    M. Sakai: Solution to the obstacle problem as a Green potential, J. Analyse Math. 44 (1984/85), 97–116.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Lavi Karp
    • 1
  • Harold S. Shapiro
    • 2
  1. 1.Department of MathematicsORT Braude CollegeKarmielIsrael
  2. 2.Department of MathematicsRoyal Institue of TechnologyStockholmSweden

Personalised recommendations