Advertisement

On the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines

  • Armin Iske
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

This paper proves convergence rates for local scattered data interpolation by polyharmonic splines. To this end, it is shown that the Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform scalings. Consequences of this important result for the numerical stability of the local interpolation scheme are discussed. A stable algorithm for the evaluation of polyharmonic spline interpolants is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Beatson, W. A. Light, S. Billings: Fast solution of the radial basis function interpolation equations: domain decomposition methods, SIAM J. Sci. Comput. 22 (2000), 1717–1740.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    J. Behrens, A. Iske: Grid free adaptive semi-Lagrangian advection using radial basis functions, Computers and Mathematics with Applications, 43:3–5 (2002), 319–327.Google Scholar
  3. 3.
    J. Behrens, A. Iske, S. Pöhn: Effective node adaption for grid free semiLagrangian advection, Discrete Modelling and Discrete Algorithms in Continuum Mechanics, Th. Sonar, I. Thomas (eds.), Logos Verlag, Berlin, 2001, 110–119.Google Scholar
  4. 4.
    J. Behrens, A. Iske, M. Käser: Adaptive meshfree method of backward characteristics for nonlinear transport equations, Meshfree Methods for Partial Differential Equations, M. Griebel, M.A. Schweitzer (eds.), Springer, Heidelberg, 2002, 21–36.Google Scholar
  5. 5.
    M.D. Buhmann: Radial basis functions, Acta Numerica, 2000, 1–38.Google Scholar
  6. 6.
    P. Deuflhard, A. Hohmann.Numerical Analysis in Modern Scientific Computing: An Introduction. Second edition, Springer, New York, 2003.CrossRefGoogle Scholar
  7. 7.
    J. Duchon:Interpolation des Fonctions de deux variables suivant le principe de la flexion des plaques minces, R.A.I.R.O. Analyse Numeriques 10 (1976), 5–12.MathSciNetGoogle Scholar
  8. 9.
    J. Duchon:Sur l’erreur d’interpolation des fonctions de plusieurs variables par les Dm-splines, R.A.I.R.O. Analyse Numeriques12(1978), 325–334.zbMATHMathSciNetGoogle Scholar
  9. 10.
    N. Dyn:Interpolation of scattered data by radial functions,in Topics in MultivariateApproximation,C. K. Chui, L. L. Schumaker, F. I. Utreras (eds.), Academic Press, 1987, 47–61.Google Scholar
  10. 11.
    N. Dyn:Interpolation and approximation by radial and related functions, inApproximation Theory VI, C. K. Chui, L. L. Schumaker, J. D. Ward (eds.), Academic Press, New York, 1989, 211–234.Google Scholar
  11. 12.
    T. Gutzmer, A. Iske: Detection of discontinuities in scattered data approximation, Numer. Algorithms16(1997), 155–170.zbMATHMathSciNetGoogle Scholar
  12. 13.
    N. J. Higham:Accuracy and Stability of Numerical AlgorithmsSIAM, Philadelphia, 1996.Google Scholar
  13. 14.
    W. Light, H. Wayne:On power functions and error estimates for radial basis function interpolation, J. Approx. Theory921998, 245–266.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 15.
    W. R. Madych, S. A. Nelson:Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), 77–89.zbMATHMathSciNetGoogle Scholar
  15. 16.
    W. R. Madych, S. A. Nelson:Multivariate interpolation and conditionally positive definite functions II, Math. Comp. 54 (1990), 211–230.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 17.
    J. Meinguet: Multivariate interpolation at arbitrary points made simple, Z. Angew. Math. Phys.30(1979), 292–304.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 18.
    J. Meinguet:An intrinsic approach to multivariate spline interpolation at arbitrary points, in PolynomialandSpline Approximations, N B Sahney (ed.), Reidel, Dordrecht, 1979, 163–190.Google Scholar
  18. 19.
    C. A. Micchelli:Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2, 1986, 11–22.zbMATHMathSciNetGoogle Scholar
  19. 20.
    F. J. Narcowich, J. D. Ward:Norm estimates for the inverses of a general class of scattered-data radial function interpolation matrices, J. Approx. Theory691992, 84–109.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 21.
    M. J. D. Powell:The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math.681994, 107–128.zbMATHGoogle Scholar
  21. 22.
    R. Schaback: Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp.68(1999), 201–216.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 23.
    R. Schaback:Stability of radial basis function interpolants, in Approximation Theory X: Wavelets,Splines,and Applications, C.K. Chui, L.L. Schumaker, J. Stöckler (eds.), Vanderbilt Univ. Press, Nashville, 2002, 433–440.Google Scholar
  23. 24.
    R. Schaback, H. Wendland:Characterization and construction of radial basis functions, inMultivariate Approximation and Applications, N. Dyn, D. Leviatan, D. Levin, A. Pinkus (eds.), Cambridge University Press, Cambridge, 2001, 1–24.CrossRefGoogle Scholar
  24. 25.
    R. Schaback, H. Wendland: Inverse and saturation theorems for radial basis function interpolation, Math. Comp. 71 (2002), 669–681.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 26.
    Z. Wu, R. Schaback: Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), 13–27.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Armin Iske
    • 1
  1. 1.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations