Advertisement

Multivariate Balanced Vector-Valued Refinable Functions

  • Charles K. Chui
  • Qingtang Jiang
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

Vanishing moments of sufficiently high order and compact supports of reasonable size contribute to the great success of wavelets in various areas of applications, particularly in signal and image processing. However, for multi—wavelets, polynomial preservation of the refinable function vectors does not necessarily imply annihilation of discrete polynomials by the high—pass filters of the corresponding orthogonal or bi—orthogonal multi—wavelets. This led to the introduction of the notion of “balanced” multi—wavelets by Lebrun and Vetterli, and later, generalization to higher—order balancing by Selesnick. Selesnick’s work is concerned only with orthonormal refinable function vectors and orthonormal multi—wavelets. In this paper after giving a brief overview of the state—of—the—art of vector—valued refinable functions in the preliminary section, we will discuss our most recent contribution to this research area. Our goal is to derive a set of necessary and sufficient conditions that characterize the balancing property of any order for the general multivariate matrix—dilation setting. We will end the second section by demonstrating our theory with examples of univariate splines and bivariate splines on the four—directional mesh.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Attakitmongcol, D. P. Hardin, D. M. Wilkes: Multiwavelet prefislters II: Optimal orthogonal prefilters, IEEE Tran. Image Proc., to appear.Google Scholar
  2. 2.
    C. de Boor, R. DeVore, A. Ron: Approximation orders of FSI spaces in L2(1R d, Constr. Approx. 14 (1998), 631–652.zbMATHMathSciNetGoogle Scholar
  3. 3.
    C. Cabrelli, C. Heil, U. Molter: Accuracy of lattice translates of several multidimensional refinable functions J. Approx. Theory 95 (1998), 5–52Google Scholar
  4. 4.
    C. Cabrelli, C. Heil, U. Molter: Accuracy of several multidimensional refinable distributions, J. Fourier Anal. Appl. 6 (2000), 483–502.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    D. R. Chen, R. Q. Jia, S. D. Riemenschneider: Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comput. Harmonic Anal. 12 (2002), 128–149.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    C. K. Chui: Multivariate Splines, NSF-CBMS Series #54, SIAM, Philadelphia, 1988.CrossRefGoogle Scholar
  7. 7.
    C. K. Chui, Q. T. Jiang: Characterization and construction of balanced multi-wavelets in Rs, manuscript.Google Scholar
  8. 8.
    C. K. Chui, J. Lian: A study of orthonormal multi-wavelets, J. Appl. Numer. Math. 20 (1996), 273–298.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Cohen, I. Daubechies, G. Plonka: Regularity of refinable function vectors, J. Fourier Anal. Appl. 3 (1997), 295–324.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Donovan, J. Geronimo, D. P. Hardin, P. Massopust: Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal. 27 (1996), 1158–1192.zbMATHMathSciNetGoogle Scholar
  11. 11.
    G. C. Donovan, J. S. Geronimo, D. P. Hardin: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets, SIAM J. Math. Anal. 30 (1999), 1029–1056.zbMATHMathSciNetGoogle Scholar
  12. 12.
    J. Geronimo, D. P. Hardin, P. Massopust: Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994), 373–401.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    T. N. T. Goodman: Pairs of refinable bivariate splines, In: Advanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter and L.L. Schumaker (eds.), World Sci. Publ. Co., Singapore, 1996.Google Scholar
  14. 14.
    T. N. T. Goodman, S. L. Lee: Convergence of cascade algorithms, In: Mathematical Methods for Curves and Surfaces II,191–212, M. Dhlen, T. Lyche, and L.L. Schumaker (eds.), Vanderbilt University Press, Nashville, 1998.Google Scholar
  15. 15.
    B. Han, R. Q. Jia: Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998), 1177–1999.zbMATHMathSciNetGoogle Scholar
  16. 16.
    D. P. Hardin, D. W. Roach: Multiwavelet prefilters I: Orthogonal prefilters preserving approximation order p < 2, IEEE Tran. Circuits and System—II 45 (1998), 1119–1125.Google Scholar
  17. 17.
    C. Heil, D. Colella: Matrix refinement equations: existence and uniqueness, J. Fourier Anal. Appl. 2 (1996), 363–377.zbMATHMathSciNetGoogle Scholar
  18. 18.
    C. Heil, G. Strang, V. Strela: Approximation by translates of refinable functions, Numer. Math. 73 (1996), 75–94.zbMATHMathSciNetGoogle Scholar
  19. 19.
    L. R. Iyer, A. E. Bell: Improving image compression performance with balanced multiwavelets, in Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers (Asilomar 2001), 773–777, Pacific Grove, CA, 2001.Google Scholar
  20. 20.
    R. Q. Jia: Subdivision schemes in L p spaces, Adv. Comp. Math. 3 (1995), 309–341.zbMATHGoogle Scholar
  21. 21.
    R. Q. Jia: Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), 647–665.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    R. Q. Jia: Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999), 4089–4112.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    R. Q. Jia: Convergence of vector subdivision schemes and construction of biorthogonal multiple wavelets, In: Advances in Wavelets, Ka—Sing Lau (ed.), 199–227, Springer, Singapore, 1999.Google Scholar
  24. 24.
    R. Q. Jia: Cascade algorithms in wavelet analysis,preprint, Univ. of Alberta, 2002.Google Scholar
  25. 25.
    R. Q. Jia, Q. T. Jiang: Approximation power of refinable vectors of functions, In: Wavelet analysis and applications, Studies Adv. Math. #25, 155–178, Amer. Math. Soc., Providence, RI, 2002.Google Scholar
  26. 26.
    R. Q. Jia, Q. T. Jiang: Spectral analysis of transition operators and its applications to smoothness analysis of wavelets,SIAM J. Matrix Anal. Appl., to appear.Google Scholar
  27. 27.
    R. Q. Jia, K. S. Lau, D. X. Zhou: L p solutions of refinement equations, J. Fourier Anal. Appl. 7(2001), 143–167.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    R. Q. Jia, S. D. Riemenschneider, D. X. Zhou: Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998), 1533–1563.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    R. Q. Jia, S. D. Riemenschneider, D. X. Zhou: Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21 (1999), 1–28.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    R. Q. Jia, Z. W. Shen: Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994), 271–300.zbMATHMathSciNetGoogle Scholar
  31. 31.
    R. Q. Jia, S. R. Zhang: Spectral properties of the transition operator associated to a multivariate refinement equation, Linear Algebra Appl. 292 (1999), 155–178.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Q. T. Jiang: Biorthogonal multiwavelets, Tech. Report, National University of Singapore, 1997.Google Scholar
  33. 33.
    Q. T. Jiang: Orthogonal multiwavelets with optimum time frequency resolution, IEEE Trans. Signal Proc., 46 (1998), 830–844.CrossRefGoogle Scholar
  34. 34.
    Q. T. Jiang: Multivariate matrix refinable functions with arbitrary matrix dilation, Trans. Amer. Math. Soc. 351 (1999), 2407–2438.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Q. T. Jiang: Parameterization of symmetric orthogonal multifilter banks with different filter length, Linear Algebra Appl. 311 (2000), 79–96.CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Q.T. Jiang, P. Oswald: On the analysis of 0-subdivision,J. Comp. Appl. Math., to appear.Google Scholar
  37. 37.
    B. R. Johnson: Multiwavelet moments and projection prefilters,IEEE Trans. Signal Proc. 48 (2000), 3100–3108.CrossRefzbMATHGoogle Scholar
  38. 38.
    M. J. Lai: Approximation order from bivariate C 1 cubics on a four-directional mesh is full, Computer Aided Geometric Design 11 (1994), 215–223.CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    W. Lawton, S. L. Lee, Z. W. Shen: Convergence of multidimensional cascade algorithm, Numer. Math. 78 (1998), 427–438.zbMATHMathSciNetGoogle Scholar
  40. 40.
    J. Lebrun, M. Vetterli: Balanced multiwavelets: Theory and design,IEEE Trans. Signal Processing 46 (1998), 1119–1125.CrossRefMathSciNetGoogle Scholar
  41. 41.
    J. Lebrun, M. Vetterli: High order balanced multiwavelets, In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), Seattle, 1998.Google Scholar
  42. 42.
    R. L. Long, W. Chen, S. L. Yuan: Wavelets generated by vector multiresolution analysis, Appl. Comput. Harmonic Anal. 4 (1997), 317–350.CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    M.B. Martin, A. E. Bell: New image compression techniques Using multiwavelets and multiwavelet packets, IEEE Trans. Image Proc. 10 (2001), 500–511.CrossRefzbMATHGoogle Scholar
  44. 44.
    C. A. Micchelli, T. Sauer: Regularity of multiwavelets, Adv. Comp. Math. 7 (1997), 455–545.zbMATHMathSciNetGoogle Scholar
  45. 45.
    C. A. Micchelli, T. Sauer: On vector subdivision, Math. Z. 229 (1998), 621–674.CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    G. Plonka: Approximation order provided by refinable function vectors, Constr. Approx. 13 (1997), 221–244.zbMATHMathSciNetGoogle Scholar
  47. 47.
    A. Ron, Z. W. Shen: The Sobolev regularity of refinable functions, J. Approx. Theory 106 (2000), 185–225.CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    I. W. Selesnick: Multiwavelets with extra approximation properties, IEEE Trans. Signal Proc. 46 (1998), 2898–2909.CrossRefMathSciNetGoogle Scholar
  49. 49.
    I. W. Selesnick: Balanced multiwavelet bases based on symmetric FIR filters, IEEE Trans. Signal Proc. 48 (2000), 184–191.CrossRefzbMATHGoogle Scholar
  50. 50.
    Z. W. Shen: Refinable function vectors, SIAM J. Math. Anal. 29 (1998), 235–250.zbMATHGoogle Scholar
  51. 51.
    G. Strang: Eigenvalues of (j 2)H and convergence of cascade algorithm,IEEE Trans. Signal Proc. 44 (1996), 233–238.CrossRefGoogle Scholar
  52. 52.
    V. Strela, P. Heller, G. Strang, P. Topiwala, C. Heil: The application of multiwavelet filter banks to image processing, IEEE Trans. Image Proc. 8 (1999), 548–563.CrossRefGoogle Scholar
  53. 53.
    V. Strela, A. Walden: Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms, In: Nonlinear and nonstationary signal processing, 395–441, Cambridge Univ. Press, Cambridge, 2000.Google Scholar
  54. 54.
    J. Y. Tham, L. X. Shen, S. L. Lee, H. H. Tan: A general approach for analysis and application of discrete multiwavelet transforms, IEEE Trans. Signal Proc. 48 (2000), 457–464.CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    C. Weidmann, J. Lebrun, M. Vetterli: Significance tree image coding using balanced multiwavelets, In: Proceedings of IEEE ICIP, Vol. 1 97–101, 1998.Google Scholar
  56. 56.
    T. Xia, Q. T. Jiang: Optimal multifilter banks: Design,related symmetric extension transform and application to image compression, IEEE Trans. Signal Proc. 47 (1999), 1878–1889.CrossRefzbMATHGoogle Scholar
  57. 57.
    X. G. Xia: A new prefilter design for discrete multiwavelet transform, IEEE Trans. Signal Proc. 46 (1998), 1558–1570.CrossRefGoogle Scholar
  58. 58.
    X. G. Xia, D. P. Hardin, J. S. Geronimo, B. Suter: Design of prefilters for discrete multiwavelet transforms, IEEE Trans. Signal Proc. 44 (1996), 25–35.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Charles K. Chui
    • 1
    • 2
  • Qingtang Jiang
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Missouri—St. LouisSt. LouisUSA
  2. 2.Department of Statistics StanfordStanford UniversityUSA

Personalised recommendations