Advertisement

Reconstructing Multivariate Functions from Large Data Sets

  • Holger Wendland
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

In this paper we discuss an efficient method for reconstructing multivariate functions from large sets of scattered data. Our method is based on (conditionally) positive definite kernels and a partition of unity. It is tailored to solve such reconstruction problems efficiently even if the space dimension is high and the number of data points is huge. We generalize the classical interpolation approach to dealing with other information than point evaluations. Finally, we demonstrate the generality of our approach by providing three different examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Babuska, J. M. Melenk: The partition of unity method, Int. J. Numer. Methods Eng. 40 (1997), 727–758.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. K. Beatson, L. Greengard: A short course on fast multipole methods. In Wavelets, multilevel methods and elliptic PDEs. 7th EPSRC numerical analysis summer school, University of Leicester, Leicester, GB, July 8–19, 1996, M. Ainsworth et al. (eds.), Clarendon Press, Oxford, 1997, pp. 1–37.Google Scholar
  3. 3.
    A. Beckert, H. Wendland: Multivariate interpolation for fluid-structureinteraction problems using radial basis functions. Aerosp. Sci. Technol. 5 (2001), 125–134.zbMATHGoogle Scholar
  4. 4.
    R. Brownlee, W. Light: Approximation orders for interpolation by surface splines to rough functions. Preprint, Leicester, 2002.Google Scholar
  5. 5.
    J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, T. R. Evans: Reconstruction and representation of 3D objects with radial basis functions. In Computer Graphics Proceedings, Annual Conference Series (2001), Addison Wesley, pp. 67–76.Google Scholar
  6. 6.
    R. Franke: Smooth interpolation of scattered data by local thin plate splines, Comput. Math. Appl. 8 (1982), 273–281.zbMATHMathSciNetGoogle Scholar
  7. 7.
    W. R. Madych, S. A. Nelson: Multivariate interpolation and conditionally positive definite functions, Approximation Theory Appl. 4 (1988), 77–89.zbMATHMathSciNetGoogle Scholar
  8. 8.
    W. R. Madych, S. A. Nelson: Multivariate interpolation and conditionally positive definite functions II, Math. Comput. 54 (1990), 211–230.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    F. J. Narcowich, J. D. Ward: Scattered-data interpolation on IRn: Error estimates for radial basis and band-limited functions. preprint 2002.Google Scholar
  10. 10.
    R. Schaback: Error estimates and condition number for radial basis function interpolation. Adv. Comput. Math. 3 (1995), 251–264.zbMATHMathSciNetGoogle Scholar
  11. 11.
    R. Schaback: Native Hilbert spaces for radial basis functions I. In New Developments in Approximation Theory. 2nd international Dortmund meeting (IDoMAT) ’98, Germany, February 23–27, 1998, M. W. Müller et al. (eds.), Int. Ser. Numer. Math. 132, Birkhäuser, Basel 1999, pp. 255–282.Google Scholar
  12. 12.
    R. Schaback, H. Wendland: Characterization and construction of radial basis functions. In Multivariate Approximation with Applications, N. Dyn, D. Leviatan, D. Levin, A. Pinkus (eds.), Cambridge University Press, Cambridge 2001, pp. 1–24.CrossRefGoogle Scholar
  13. 13.
    H. Wendland: Fast evaluation of radial basis functions: Methods based on partition of unity. In Approximation Theory X: Wavelets, Splines, and Applications, C. K. Chui, L. L. Schumaker, J. Stöckler (eds.), Vanderbilt University Press, pp. 473–483.Google Scholar
  14. 14.
    H. Wendland: Surface reconstruction from unorganized points. Preprint, Göttingen 2002.Google Scholar
  15. 15.
    Z. Wu: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approximation Theory Appl. 8 (1992), 1–10.zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Holger Wendland
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikUniversität GöttingenGöttingenGermany

Personalised recommendations