Advertisement

How to Generate Smoother Refinable Functions from Given Ones

  • Tomas Sauer
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

We consider the question of how and to what extent the simple process of smoothing refinable functions by creating an additional zero at —1 of the associated symbol can be transferred to the multivariate case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Cavaretta, W. Dahmen, C. A. Micchelli: Stationary Subdivision, Memoirs Amer. Math. Soc. 93, Providence, R. I., 1991.Google Scholar
  2. 2.
    D. Cox, J. Little, D. O’Shea: Ideals, Varieties and Algorithms, Springer, New York—Berlin—Heidelberg—Tokyo, 1996.Google Scholar
  3. 3.
    W. Dahmen, C. A. Micchelli: Biorthogonal wavelet expansions, Constr. Approx. 13 (1997), 294–328.Google Scholar
  4. 4.
    N. Dyn: Subdivision schemes in Computer Aided Geometric Design, In: Advances in Numerical Analysis — Volume II, Wavelets,Subdivision Algorithms and Radial Basis Functions, W. Light (ed.), 36–104, Clarendon, Oxford, 1992.Google Scholar
  5. 5.
    K. Jetter, G. Plonka: A survey on L2-approximation order from shift-invariant spaces,In: Multivariate Approximation and Applications, N. Dyn, D. Leviatan, D. Levin, A. Pinkus (eds.), 73–111, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
  6. 6.
    V. Latour, J. Müller, W. Nickel: Stationary subdivision for general scaling matrices, Math. Z. 227 (1998), 645–661.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    C. A. Micchelli, T. Sauer: Regularity of multiwavelets, Advances Comput. Math. 7 (1997), 455–545.zbMATHMathSciNetGoogle Scholar
  8. 8.
    C. A. Micchelli, T. Sauer: On vector subdivision, Math. Z. 229 (1998), 621–674.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. M. Möller, F. Mora: New constructive methods in classical ideal theory, J. Alg. 100 (1986), 138–178.CrossRefzbMATHGoogle Scholar
  10. 10.
    H. M. Möller, T. Sauer: Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials, Advances Comput. Math., to appear.Google Scholar
  11. 11.
    T. Sauer: Polynomial interpolation, ideals and approximation order of refinable functions, Proc. Amer. Math. Soc. 130 (2002), 3335–3347.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Sauer: Subdivisión vectorial estacionaria: ideales cociente,diferencias y potencia de aproximación, Rev. R. Acad. Cienc. Serie A. Mat. 96 (2002), 257–277.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Tomas Sauer
    • 1
  1. 1.Lehrstuhl für Numerische Mathematik Justus-Liebig-Universität Gießen Heinrich-Buff-Ring 44GießenGermany

Personalised recommendations