Advertisement

Integer DCT—II by Lifting Steps

  • Gerlind Plonka
  • Manfred Tasche
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

In image compression, the discrete cosine transform of type II (DCT-II) is of special interest. In this paper we use a new approach to construct an integer DCT-II first considered in [15]. Our method is based on a factorization of the cosine matrix of type II into a product of sparse, orthogonal matrices. The construction of the integer DCT-II of length 8 works with lifting steps and rounding-off. We are especially interested in the normwise error and the componentwise error when the integer DCT-II is compared with the exact DCT-II.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Calderbank, I. Daubechies, W. Sweldens, B. L. Yeo: Wavelet transforms that map integers to integers, Appl. Comput. Harmon. Anal. 5 (1998), 332–369.zbMATHMathSciNetGoogle Scholar
  2. 2.
    W. K. Cham, P. C. Yip: Integer sinusoidal transforms for image processing, Internat. J. Electron. 70 (1991), 1015–1030.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Y.-J. Chen, S. Oraintara, T. Q. Nguyen: Integer discrete cosine transform IntDCT, Preprint, Univ. Boston, 2000.Google Scholar
  4. 4.
    Y.-J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga, T. Q. Nguyen: Multiplierless approximation of transforms using lifting scheme and coordinate descent with adder constraint, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., Vol. 3, 2002, 3136–3139.Google Scholar
  5. 5.
    L. Z. Cheng, H. Xu, Y. Luo: Integer discrete cosine transform and its fast algorithm, Electron. Lett. 37 (2001), 64–65.Google Scholar
  6. 6.
    I. Daubechies, W. Sweldens: Factoring wavelet transforms into lifting steps, J. Fourier Anal. Appl. 4 (1998), 247–269.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    K. Komatsu, K. Sezaki: Reversible discrete cosine transform, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., 1998, 1769–1772.Google Scholar
  8. 8.
    K. Komatsu, K. Sezaki: 2D lossless discrete cosine transform, Proc. IEEE Internat. Conf. Image Process., 2001, 466–469.Google Scholar
  9. 9.
    J. Liang, T. D. Tran: Fast multiplierless approximations of the DCT with the lifting scheme, IEEE Trans. Signal Process. 49 (2001), 3032–3044.CrossRefGoogle Scholar
  10. 10.
    C. Loeffler, A. Lightenberg, G. Moschytz: Practical fast 1-d DCT algorithms with 11 multiplications, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., Vol. 2, 1989, 988–991.CrossRefGoogle Scholar
  11. 11.
    M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek: An overview of JPEG-2000, Proc. Data Compression Conf., 2000, 523–541.CrossRefGoogle Scholar
  12. 12.
    W. Philips: Lossless DCT for combined lossy/lossless image coding, Proc. IEEE Internat. Conf. Image Process., Vol. 3, 1998, 871–875.Google Scholar
  13. 13.
    G. Plonka: A global method for invertible integer DCT and integer wavelet algorithms, Preprint, Univ. Duisburg, 2003.Google Scholar
  14. 14.
    G. Plonka, M. Tasche: Split-radix algorithms for discrete trigonometric transforms, Preprint, Univ. Duisburg, 2002.Google Scholar
  15. 15.
    G. Plonka, M. Tasche: Reversible integer DCT algorithms, Preprint, Univ. Duisburg, 2002.Google Scholar
  16. 16.
    M. Primbs: Integer DCT Algorithms (in German), Diploma Thesis, Institute of Mathematics, Univ. Duisburg, 2003.Google Scholar
  17. 17.
    K. R. Rao, P. Yip: Discrete Cosine Transform: Algorithms, Advantages, Applications, Academic Press, Boston 1990.Google Scholar
  18. 18.
    G. Strang: The discrete cosine transform, SIAM Rev. 41 (1999), 135–147.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    T. D. Tran: The BinDCT: Fast multiplierless approximation of the DCT, IEEE Signal Process. Lett. 7 (2000), 141–144.CrossRefGoogle Scholar
  20. 20.
    Y. Zeng, L. Cheng, G. Bi, A. C. Kot: Integer DCTs and fast algorithms, IEEE Trans. Signal Process. 49 (2001), 2774–2782.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Gerlind Plonka
    • 1
  • Manfred Tasche
    • 2
  1. 1.University of Duisburg Institute of MathematicsDuisburgGermany
  2. 2.University of Rostock Department of MathematicsRostockGermany

Personalised recommendations