Two Applications of Adaptive Wavelet Methods

  • Angela Kunoth
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)


In this survey two different applications are discussed where the particular features of wavelet bases, namely, the Riesz basis property together with their locality are exploited. The first example concerns explicitly given information and discusses the problem of fitting nonuniformly distributed data to approximate surfaces. The second application, in which the information is contained implicitly, is concerned with an optimal control problem with constraints appearing in form of a linear elliptic partial differential equation. Both applications have in common that the formulation of the solution method is based on minimizing a quadratic functional and that the concept of adaptivity in a coarse—to—fine fashion plays a central role. An appropriate refinement criterion together with a thresholding technique guarantees to avoid a large number of small and unnecessary expansion coefficients of the target objects.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Barinka: Fast Evaluation Tools for Adaptive Wavelet Schemes, Dissertation, RWTH Aachen, 2003, in preparation.Google Scholar
  2. 2.
    A. Barinka, T. Barsch, Ph. Charton, A. Cohen, S. Dahlke, W. Dahmen, K. Urban: Adaptive wavelet schemes for elliptic problems — Implementation and numerical experiments, SIAM J. Sci. Comp. 23 (2001), 910–939.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Becker, H. Kapp, R. Rannacher: Adaptive finite element methods for optimal control of partial differential equations: Basic conceptSIAM J. Contr. Optim. 39 (2000), 113–132.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    C. Burstedde, A. Kunoth:Wavelet methods for linear-quadratic control problemsManuscript, in preparation.Google Scholar
  5. 5.
    D. Castaño Diez: Adaptive data fitting with wavelets, Manuscript, October 2002.Google Scholar
  6. 6.
    D. Castaño Diez, A. Kunoth: Adaptive fitting of scattered data by spline-wavelets, Manuscript, October 2002, to appear in: Curves and Surfaces, L.L. Schumaker et. al. (eds.), Vanderbilt University Press, 2003.Google Scholar
  7. 7.
    C. K. Chui, E. G. Quak:Wavelets on a bounded intervalin:Numerical Methods of Approximation Theory, Vol. 9, D. Braess, L. L. Schumaker (eds.), Int. Ser. Numer. Math. 105, Birkhäuser, Basel, 1992, 53–75.Google Scholar
  8. 8.
    A. Cohen: Numerical Analysis of Wavelet Methods, Elsevier, 2003.Google Scholar
  9. 9.
    A. Cohen, W. Dahmen, R. DeVore:Adaptive wavelet methods for elliptic operator equations Convergence ratesMath. Comp. 70 (2001), 27–75.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Cohen, W. Dahmen, R. DeVore: Adaptive wavelet methods II Beyond the elliptic case, Found. Computat. Math. 2 (2002), 203–245.zbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Cohen, W. Dahmen, R. DeVore: Adaptive wavelet scheme for nonlinear variational problems, Preprint, July 2002.Google Scholar
  12. 12.
    A. Cohen, R. Masson: Wavelet adaptive methods for second order elliptic problems, boundary conditions and domain decomposition, Numer. Math. 86 (2000), 193–238.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    W. Dahmen. Wavelet and multiscale methods for operator equations, Acta Numerica (1997), 55–228.Google Scholar
  14. 14.
    W. Dahmen. Wavelet methods for PDEs — Some recent developments, J. Comput. Appl. Math. 128 (2001), 133–185.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    W. Dahmen. Multiscale and Wavelet Methods for Operator Equations, C.I.M.E. Lecture Notes, Springer, 2003.Google Scholar
  16. 16.
    W. Dahmen, A. Kunoth: Multilevel preconditioning, Numer. Math. 63 (1992), 315–344.zbMATHMathSciNetGoogle Scholar
  17. 17.
    W. Dahmen, A. Kunoth, R. Schneider: Wavelet least squares methods for boundary value problems, SIAM J. Numer. Anal. 39 (2002), 1985–2013.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    W. Dahmen, A. Kunoth: Adaptive wavelet methods for linear-quadratic elliptic control problems: Convergence rates, Preprint No. 42, SFB 611, Universität Bonn, December 2002, submitted for publication.Google Scholar
  19. 19.
    W. Dahmen, A. Kunoth, K. Urban: Biorthogonal spline-wavelets on the interval - Stability and moment conditions, Appl. Comput. Harm. Anal. 6 (1999), 132–196.zbMATHMathSciNetGoogle Scholar
  20. 20.
    P. Dierckx: Curve and Surface Fitting with Splines, Oxford University Press, 1993.Google Scholar
  21. 21.
    D. R. Forsey, R. H. Bartels: Hierarchical B-spline refinement, Computer Graphics 22 (1988), 205–212.CrossRefGoogle Scholar
  22. 22.
    S. J. Gortler, M. Cohen: Hierarchical and variational geometric modeling with wavelets, in: Proc. 1995 Symposium on Interactive 3D Graphics, 35 ff.Google Scholar
  23. 23.
    GT0P030 data at U.S. Geological Survey’s EROS Data Center
  24. 24.
    A. Kunoth: Fast iterative solution of saddle point problems in optimal control based on wavelets, Comput. Optim. Appl. 22 (2002), 225–259.zbMATHMathSciNetGoogle Scholar
  25. 25.
    A. Kunoth: Wavelet Methods Boundary Value Problems and Control Problems, Advances in Numerical Mathematics, Teubner, 2001. CrossRefzbMATHGoogle Scholar
  26. 26.
    J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.CrossRefzbMATHGoogle Scholar
  27. 27.
    E. J. Stollnitz, T.D. DeRose, D.H. Salesin:Wavelets for Computer Graphics, Morgan Kaufmann Publishers, San Francisco, 2000.Google Scholar
  28. 28.
    G. Wahba: Spline Models for Observational Data, Series in Applied Mathematics 59, SIAM, Philadelphia, 1990.CrossRefGoogle Scholar
  29. 29.
    H. Yserentant: On the multilevel splitting of finite element spacesNumer. Math. 49 (1986), 379–412.zbMATHMathSciNetGoogle Scholar
  30. 30.
    E. Zeidler:Nonlinear Functional Analysis and its Applications III: Variational Methods and OptimizationSpringer, 1985.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Angela Kunoth
    • 1
  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations