Advertisement

Multivariate Approximation Methods for the Pricing of Catastrophe—Linked Bonds

  • Hansjörg Albrecher
  • Jürgen Hartinger
  • Robert F. Tichy
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 145)

Abstract

In this paper we develop Quasi—Monte Carlo techniques for the evaluation of high—dimensional integrals that occur in financial applications, namely in the pricing of default—risky catastrophe—linked bonds in a model including stochastic interest rates, basis risk and default risk. It is shown that these techniques clearly outperform classical Monte Carlo integration in terms of efficiency. The methods are based on number—theoretic low—discrepancy sequences such as Halton, Sobol and Faure sequences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Albrecher, R. Kainhofer: Risk theory with a non-linear dividend barrier, Computing 68 (2002), 289–311.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    H. Albrecher, R. Kainhofer, R. F. Tichy: Simulation methods in ruin models with non-linear dividend barriers, Math. Comput. Simulation (2002), to appear.Google Scholar
  3. 3.
    R. C. Baker: On irregularities of distribution II J. London Math. Soc. (2) 59 (1999), 50–64.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    R. E. Caflisch: Monte Carlo and Quasi-Monte Carlo methods, Acta Numerica (1998), 1–46.Google Scholar
  5. 5.
    W. W. Chen, M. M. Skriganov: Explicit constructions in the classical mean squares problem in irregularities of point distribution, J. Reine Angew. Math. 545 (2002), 67–95.zbMATHMathSciNetGoogle Scholar
  6. 6.
    J. Cox, J. Ingersoll, S. Ross: The term structure of interest rates, Econometrica 53 (1985), 385–407.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    S. H. Cox, H. W. Pederson: Catastrophe risk bonds, North American Actuarial Journal 4 (2000), 56–82.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    N. A. Doherty: Financial innovation in the management of catastrophe risk, Journal of Applied Corporate Finance 10 (1997), 134–170.CrossRefGoogle Scholar
  9. 9.
    L. Devroye: Non Uniform Random Variate Generation,Springer, 1986.CrossRefGoogle Scholar
  10. 10.
    M. Drmota, R. F. Tichy: Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer, New York, 1997.Google Scholar
  11. 11.
    P. Embrechts, A. McNeil, D. Straumann: Correlation and dependence in risk management: Properties and Pitfalls, In: Risk Management: Value at Risk and Beyond (2002), M. Dempster (ed.), Cambridge Univ. Press, 176–223.CrossRefGoogle Scholar
  12. 12.
    H. Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta Arithmetica 41 (1982), 337–351.zbMATHMathSciNetGoogle Scholar
  13. 13.
    J. H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math. (1960), 84–90.Google Scholar
  14. 14.
    S. Heinrich, E. Novak, G. Wasilskowski, H. Wozniakowski: The inverse of the star-discrepancy depends linearly on the dimension, Acta Arithm. XCVI (2001), 279–302.Google Scholar
  15. 15.
    M. H. Kalos, P. A. Whitlock: Monte Carlo Methods, John Wiley, New York, 1986.CrossRefzbMATHGoogle Scholar
  16. 16.
    G. Larcher, G. Leobacher: Tractability of the Brownian bridge algorithm,preprint, 2002.Google Scholar
  17. 17.
    J. P. Lee, M. T. Yu: Pricing default-risky CAT bonds with moral hazard and basis risk, Journal of Risk and Insurance 69 (2002), 25–44.CrossRefGoogle Scholar
  18. 18.
    H. Loubergé, E. Kellezi, M. Gilli: Using catastrophe-linked securities to diversify insurance risk, Journal of Insurance Issues 22 (1999), 125–146.Google Scholar
  19. 19.
    M. Matsumoto and T. Nishimura: Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation 8 (1998), 3–30.CrossRefzbMATHGoogle Scholar
  20. 20.
    W. Morokoff: Generating quasi-random paths for stochastic processes, SIAM Review 40 (1998), 765–788.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    R. Nelsen: An Introduction to Copulas, Lecture Notes in Statistics 139, Springer, Berlin, 1999.CrossRefGoogle Scholar
  22. 22.
    H. Niederreiter: Random Number Generation and Quasi-Monte Carlo Methods, Society for Industrial and Applied Mathematics, Philadelphia, 1992.CrossRefzbMATHGoogle Scholar
  23. 23.
    H. Niederreiter, R. F. Tichy, G. Turnwald: An inequality for differences of distribution functions, Arch. Math. (Basel), 54 (1990), 166–172.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    S. H. Paskov, J. F. Traub: Faster valuation of financial derivatives,Journal of Portfolio Management (1995), 113–120.Google Scholar
  25. 25.
    K. F. Roth: On irregularities of distribution,Mathematika 1 (1954), 73–79.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    I. M. Sobol’: On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comput. Math. Math. Phys. (1967), 86–112.Google Scholar
  27. 27.
    I. M. Sobol’: Computation of improper integrals by means of equidistributed sequences, Dokl. Akad. Nauk SSSR 210 (1973), 278–281.MathSciNetGoogle Scholar
  28. 28.
    H. Woniakowski: Average case complexity of multivariate integration, Bull. Amer. Math. Soc. (N. S.) 24 (1991), 185–194.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Hansjörg Albrecher
    • 1
  • Jürgen Hartinger
    • 1
  • Robert F. Tichy
    • 1
  1. 1.Tichy Graz University of Technology Department of MathematicsGrazAustria

Personalised recommendations