Advertisement

Theoretical Thermogravimetric Analysis at Constant Heating Rates

  • C. Comel
  • J. Veron
  • C. Bouster
  • P. Vermande

Abstract

Let the general reaction rate equation be a function h (α,T) of the conversion a and the temperature T. Then the evolution, with the heating rate ø, of a, T and the experimental rate υ can be forecasted at the maximum of the rate under peculiar conditions. For instance, if h (α,T) = k(T)(1-α)n, it can be shown that an increase of υm compels related increase of Tm and decrase of υm. Regarding am, it increases first with ø up to a value αmo and decreases thereafter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D.W. Van Krevelen, C. Van Heerden and F.J. Huntjens, Fuel 30 (1951) 256Google Scholar
  2. (2).
    H.E. Kissinger, Analyt . Chem. 29. (1957)) 1702CrossRefGoogle Scholar
  3. (3).
    H.H. Horowitz and G. Metzger, Analyt. Chem. 35 (1963) 1464CrossRefGoogle Scholar
  4. (4).
    R.M. Fuoss, I.O. Salyer and H.S. Wilson, J. Polym. Sci. 2A (1964) 31 3147Google Scholar
  5. (5).
    T. Ozawa, J.Thermal Anal. 2 (1970) 301CrossRefGoogle Scholar
  6. (6).
    J. Veron et al. (in preparation).Google Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • C. Comel
    • 1
  • J. Veron
    • 1
  • C. Bouster
    • 1
  • P. Vermande
    • 1
  1. 1.Laboratoire de Chimie Appliquée, Département de Génie Energétique - Bât. 404Institut National des Sciences AppliquéesVilleurbanne CedexFrance

Personalised recommendations