Advertisement

Partial Pressure Measurement by the Flow Method

  • E. Marti
  • A. Geoffroy
  • B. F. Rordorf
  • M. Szelagiewicz
Chapter

Abstract

Accurate vapor pressures are determined by the gas flow method. The technique is reviewed in light of industrial application and important experimental aspects are discussed. A typical gas flow experiment is analyzed by transport equations. The results are illustrated on anthracene in a study of the dependence of transported mass on the inert gas flow rate. The measured vapor pressure data is analyzed in Rankine-Kirchhoff three parameter fits. A detailed comparison of our results on anthracene with literature shows good agreement with average literature values for heats of evaporation and entropies of evaporation. Comparison of the observed Δcp’s on the other hand show that the present vapor pressure results are in much better agreement with expectations for Ac than the compounded or the individual literature values.p

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rerfences

  1. (1).
    H.V. Regnault, Ann. Chim. 15 (1845) 129.Google Scholar
  2. (2).
    H.T. Gerry and L.J. Gillespie, Phys. Rev. 40. (1932) 269.CrossRefGoogle Scholar
  3. (3).
    U. Merten and W.F. Bell, “The Characterisation of High Temperature Vapors”, J.L. Margrave, editor, John Wiley & Sons: New York” (1967) 91.Google Scholar
  4. (4).
    G.W. Thomson and D.R. Douslin, “Determination of Pressure and Volume” in Physical Methods of Chemistry, Vol. 1, A. Weissberger, editor, Rossiter (1971).Google Scholar
  5. (5).
    B.F. Rordorf, A. Geoffroy, M. Szelagiewicz and E. Marti, this proceedings.Google Scholar
  6. (6).
    H. Kvande and P.G. Wahlbeck, Acta Chem. Scand. A30 (1979) 297.Google Scholar
  7. (7).
    BMDP (Biochemical Computer Programs, P-Series), UCLA Health Sciences Computing Facility, University of California Press (1977).Google Scholar
  8. (8).
    B.F. Rordorf and E. Marti, to be published.Google Scholar
  9. (9).
    L. Malaspina, R. Gigli and A. Bardi, J. Chem. Phys. 59 (1973) 387, and references therein.CrossRefGoogle Scholar
  10. (10).
    A.B. Macknick and J. M. Prausnitz, J. Chem. Eng. Data 24 (1979) 175.CrossRefGoogle Scholar
  11. (11).
    J.W. Taylor and R.J. Taylor, J. Chem. Soc, Faraday Trans. 72 (1976) 723.CrossRefGoogle Scholar
  12. (12).
    D.M. McEachern and O.L Sandovoal, J. Physics E: Sci. Instr. 6 (1972) 155.CrossRefGoogle Scholar
  13. (13).
    P. Goursot, H.L. Girdhar and E.F. Westrum, Jr. J. Phys. Chem. 74 (1970) 2538.CrossRefGoogle Scholar
  14. (14).
    G. Filippini, C.M. Gramaccioli, M. Simonetta and G.B. Suffriti, Chem. Phys. 8 (1975) 136.CrossRefGoogle Scholar
  15. (15).
    E. Mack, Jr., J. Am. Chem. Soc. 47. (1925) 2468.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • E. Marti
    • 1
  • A. Geoffroy
    • 1
  • B. F. Rordorf
    • 1
  • M. Szelagiewicz
    • 1
  1. 1.Central Function ResearchCIBA-GEIGY Ltd.BasleSwitzerland

Personalised recommendations