Kinetic Compensation Effect: Facts and Fiction of Linear Plots Using Arrhenius Law

  • J. Šesták


The deviation from the linear law In k = a + B/T may be caused by either (i) insufficient choice of the particular form of basic kinetic equation, or, (j) virtual correlation of the terms A and B/T. A quantitative estimation can be found through the angle at which these functions A and B/T meet each other in the Hilbert space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P.D. Garn, J. Thermal. Anal, 7 (1975) 475CrossRefGoogle Scholar
  2. (2).
    V.M. Gorbatchev, ibid 8 (1975) 588Google Scholar
  3. (3).
    J. Pysiak, B. Sabalski and T. Zmijevski, in “Thermal Analysis” (4th ICTA), Vol. 1, p. 205, Budapest 1975;Google Scholar
  4. (3).
    J. Pysiak, B. Sabalski and T. Zmijevski, Rozc. Chem. 54 (1971) 263Google Scholar
  5. (4).
    J. Zsako, J. Thermal. Anal. 8 (1975) 593CrossRefGoogle Scholar
  6. (5).
    A.V. Nikolayev and V.A. Logvinenko, ibid 10 (1976), 363CrossRefGoogle Scholar
  7. (6).
    P.D. Garn, ibid 13 (1978) 581CrossRefGoogle Scholar
  8. (7).
    J. Militký, “Modelling of Nonisothermal Processes”, Report VÚZ, Dvůr Králové n/L 1979; Proc. “TA and Calorimetry of Polymers”, ČSVTS Silon, Planá n/L, 1979, p. 13Google Scholar
  9. (8).
    J. Zawadski and S. Bretsznajder, Zeit. Electrochem. 41 (1935) 215Google Scholar
  10. (9).
    M. M. Pavlyuchenko and E.A. Prodan, Dokl. AN USSR 136 (1961) 651Google Scholar
  11. (10).
    A.O. Wist, in “Thermal Analysis” (2nd ICTA), Vol. 2, p. 1095, New York 1969Google Scholar
  12. (11).
    S. Z. Roginskij and J.L. Chajt, Izvest. Akad. Nauk USSR, Khimia, 1961, p. 771Google Scholar
  13. (12).
    P. Barret, “Cinetique heterogenne”, Gauthier-Villars, Paris 1973Google Scholar
  14. (13).
    N.N. Oleynikov, Ju.D. Tretyakov and A. V. Schumyancev, J. Solid State Chem. 11. (1974) 34CrossRefGoogle Scholar
  15. (14).
    F. Solymosi, K. Jáky and Z.G. Szabo, Zeit, anorg. allg. Chem. B 368 (1969), 211CrossRefGoogle Scholar
  16. (15).
    D. Dollimore and P.F. Rogers, Thermochim. Acta 30 (1979), 273CrossRefGoogle Scholar
  17. (16).
    G.G.T. Guarrini, R. Spinicci, F.M. Carlini and D. Donati, J. Thermal. Anal. 5 (1973), 307CrossRefGoogle Scholar
  18. (17).
    K.H. Lieser, in “Preprints of 8th Int. Symp. React. Solids”, Gotenborg, Sweden 1976, p. 174Google Scholar
  19. (18).
    J.R. Hullet, Quarterly Reviews 18 (1964), 227CrossRefGoogle Scholar
  20. (19).
    J. Šesták, review “Philosophy of Nonisothermal Kinetics” in J. Thermal. Anal. 16 (1979) 503CrossRefGoogle Scholar
  21. (20).
    J. Pysiak, A. Glinka, in the Proc. Glinka, in the Proc. “Termanal 79”, SVŠT Bratislava, 1979, p. 323; in “Komunikaty” of 2nd Seminary of Bretsznajder, Plock 1979, p. K4Google Scholar
  22. (21).
    J, Šesták, “Thermophysical Properties of Solids; Their Measurement and Theoretical TA”, Academia -Elsevier, in printGoogle Scholar
  23. (22).
    P. Voňka, “Treatments of Measured Data in Physical Chemistry”, Thesis at VŠCHT, Praha 1975Google Scholar
  24. (23).
    B.Z. Vulich, “Uvedeniye v funkcionalnyi analyz”, Nauka, Moskva 1965Google Scholar
  25. (24).
    L. Coliatz, Funkcionální analýza a numerická matematika, SNTL, Praha 1970.Google Scholar

Copyright information

© Springer Basel AG 1980

Authors and Affiliations

  • J. Šesták
    • 1
  1. 1.Institute of Physics of the Czechoslovak Academy of SciencesPrahaČSSR

Personalised recommendations