Advertisement

The Mode of Action of MAO-B Inhibitors

  • M. Gerlach
  • P. Riederer
  • M. B. H. Youdim
Chapter
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Monoamine oxidase (EC 1.4.3.4; amine: oxygen oxidoreductase (deaminating; flavin-containing) (MAO) is an enzyme of the outer mitochondrial membrane and catalyzes the oxidative deamination of amines according to the overall equation .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blaschko H. Amine oxidase and amine metabolism. Pharmac Rev 1952; 4: 415–53.Google Scholar
  2. [2]
    De Varebeke PJ, Cavalier R, David-Remacle M, Youdim MBH. Formation of the neurotransmitter glycine from the anticonvulsant milacemide is mediated by brain monoamine oxidase B. J Neurochem 1988; 50: 1011–16.CrossRefGoogle Scholar
  3. [3]
    Chiba K, Trevor A, Castagnoli Jr N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120: 574–78.CrossRefGoogle Scholar
  4. [4]
    Heikkila RE, Manzino L, Cabbat FS, Duvoisin RS. Protection against the dopaminergic neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984; 311: 467–9.CrossRefGoogle Scholar
  5. [5]
    May T, Strauss S, Rommelspacher H. [3H]Harman labels selectively and with high affinity the active site of monoamine oxidase (EC 1.4.3.4) subtype A (MAO-A) in rat, marmoset, and pig. J Neural Transm [Supplement] 1990; 32: 93–102.Google Scholar
  6. [6]
    Dostert PL, Strolin-Benedetti M, Tipton KF. Interactions of monoamine oxidase with substrates and inhibitors. Med Res Rev 1990; 9: 45–89.CrossRefGoogle Scholar
  7. [7]
    Youdim MBH, Finberg JPM, Tipton KF. Monoamine oxidase. In: Trendelenburg U, Weiner N, editors. Catecholamines I, handbook of experimental pharmacology, Vol 90/1. Berlin Heidelberg New York: Springer-Verlag, 1988: 119–92.Google Scholar
  8. [8]
    Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 1968; 17: 1285–97.CrossRefGoogle Scholar
  9. [9]
    Fowler CJ, Callingham BA, Mantle TJ, Tipton KF. Monoamine oxidase A and B: a useful concept? Biochem Pharmacol 1978; 27: 97–101.CrossRefGoogle Scholar
  10. [10]
    Tipton KF, Fowler CJ, Houslay MD. Specifities of the two forms of monoamine oxidase. In: Kamijo K, Usdin E, Nagatsu T, editors. Monoamine oxidase. Amsterdam: Oxford, Princeton: Excerpta Medica, 1982: 87–99.Google Scholar
  11. [11]
    Kinemuchi H, Fowler CJ, Tipton KF. Substrate specifities of the two forms of monoamine oxidase. In: Tipton KF, Dostert PL, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London New York: Academic Press, 1984: 53–62.Google Scholar
  12. [12]
    O’Carroll AM, Fowler CJ, Phillips JP, Tobia I, Tipton KF. The deamination of dopamine by human brain monoamine oxidase: specificity for the two enzyme forms in seven brain regions. Naunyn-Schmiedeberg’s Arch Pharmacol 1983; 322: 198–202.CrossRefGoogle Scholar
  13. [13]
    Riederer P, Youdim MBH. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with l-deprenyl. J Neurochem 1986; 46: 1359–65.CrossRefGoogle Scholar
  14. [14]
    Denney RM, Patel NT, Fritz RR, Abell CW. A monoclonal antibody elicited to human platelet monoamine oxidase, isolation and specificity for human monoamine oxidase B but not A. Mol Pharmacol 1982; 22: 500–8.Google Scholar
  15. [15]
    Konradi C, Kornhuber J, Froelich L, Fritze J, Heinsen H, Beckmann H et al. Demonstration of monoamine oxidase-A and B in the human brainstem by a histochemical technique. Neuroscience 1989; 33: 383–400.CrossRefGoogle Scholar
  16. [16]
    Konradi C, Svoma E, Jellinger K, Riederer P, Denney RM, Thibault J. Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 1988; 26: 791–802.CrossRefGoogle Scholar
  17. [17]
    Bach AWJ, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW et al. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 1988; 85: 4934–8.CrossRefGoogle Scholar
  18. [18]
    Bach AWJ, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW et al. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Neurobiology 1988; 85: 4934–38.Google Scholar
  19. [19]
    Lan NC, Chan C, Shih J. Expression of functional human monoamine oxidase A and B cDNAs in mammalian cells. J Neurochem 1989; 52: 1652–54.CrossRefGoogle Scholar
  20. [20]
    Rando RR. Chemistry and enzymology of kcat inhibitors. Science 1974; 185: 320–4.CrossRefGoogle Scholar
  21. [21]
    Singer TP. Active site-directed irreversible inhibitors of monoamine oxidase. In: Singer TP, von Korf, RW, Murphy DL, editors. Monoamine oxidase: structure, function, and altered functions. New York: Academic Press, 1979: 7–24.Google Scholar
  22. [22]
    Tipton KF, Fowler CJ. The kinetics of monoamine oxidase inhibitors in relation to their clinical behaviour. In: Tipton KF, Dostert PL, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London New York: Academic Press, 1984: 27–40.Google Scholar
  23. [23]
    Gerlach M, Riederer P, Youdim MBH. The molecular pharmacology of l-deprenyl. European J Pharmacol [Molec Pharamacol Sect.] 1992; 226: 97–108.CrossRefGoogle Scholar
  24. [24]
    Schmauss M, Erfurth A. Indikationen für eine Therapie mit MAO-Hemmern. Psychiat Prax [Sonderheft] 1989; 16: 2–6.Google Scholar
  25. [25]
    Crane GE. Iproniazid (Marsilid) phosphate, a therapeutic agent for mental disorders and debilitating disease. Psychiat Res Rep 1957; 8: 142–52.Google Scholar
  26. [26]
    Kline DF. Clinical experience with iproniazid (Marsilid). J Clin Exp Psychopathol [Supplement] 1958; 1: 72–8.Google Scholar
  27. [27]
    Blackwell B, Marley E, Price J, Taylor D. Interactions with cheese and its constituents with monoamine oxidase inhibitors. Br J Psychiat 1967; 113: 349–65.CrossRefGoogle Scholar
  28. [28]
    Youdim MBH, Finberg JPM. MAO type-B inhibitors as adjunct to L-dopa therapy. In: Yahr MD, Bergmann KJ, editors. Advances in Neurology, Vol 45. New York: Raven Press, 1986: 127–36.Google Scholar
  29. [29]
    Kalir A, Sabbagh A, Youdim MBH. Selective acetylenic ‘suicide’ and reversible inhibitors of monoamine oxidase types A and B. Br J Pharmacol 1981; 73: 55–64.CrossRefGoogle Scholar
  30. [30]
    Dollery CT, Davies DS, Strolin-Benedetti M. Clinical pharmacology of MD 780515, a selective and reversible MAO-A inhibitor. In: Kamijo K, Usdin E, Nagatsu T, editors. Monoamine oxidase, basic and clinical frontiers. Amsterdam: Excerpta Medica, 1982: 221–9.Google Scholar
  31. [31]
    Knoll J. The pharmacology of (—)-deprenyl. J Neural Transm [Supplement] 1986; 22: 75–89.Google Scholar
  32. [32]
    Palfreyman MG, Zreika M, McDonald I, Fozard J, Bey P. MDL 72,145, an irreversible inhibitor of MAO-B. In: Tipton KF, Dostert P, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London: Academic Press, 1986: 563–4.Google Scholar
  33. [33]
    Keller HH, Kettler R, Keller G, Da Prada M. Short-acting novel MAO inhibitors: in vitro evidence for the reversibility of MAO inhibition by moclobemide and Ro 16–6491. Naunyn-Schmiedeberg’s Arch Pharmacol 1987; 335: 15–20.Google Scholar
  34. [34]
    Da Prada M, Kettler R, Keller HH, Burkard WP. Ro 19–6327, a reversible, highly selective inhibitor of type-B monoamine oxidase, completely devoid of tyramine-potenti-ating effects: comparison with selegiline. Neurol Neurobiol 1988; 42B: 359–63.Google Scholar
  35. [35]
    Da Prada M, Kettler R, Zürcher G, Kettler HH. Hemmer der MAO-B und COMT: Möglichkeiten ihrer Anwendung bei der Parkinson-Therapie aus heutiger Sicht. In: Fischer P-A, editor. Modifizierende Faktoren bei der Parkinson-Therapie. Basel: Edi-tiones (Roche), 1988: 309–22.Google Scholar
  36. [36]
    Zreika M, Fozard JR, Dudley MW, Bey Ph, McDonald IA, Palfreyman MG. MDL 72,974: a potent and selective enzyme-activated irreversible inhibitor of monoamine oxidase type B with potential for use in Parkinson’s disease. J Neural Transm [P-D Sect.] 1989; 1: 243–54.CrossRefGoogle Scholar
  37. [37]
    Birkmayer W, Riederer P, Youdim MBH, Linauer W. The potentiation of the anti-akinetic effect after L-dopa-treatment by an inhibitor of MAO-B, deprenyl. J Neural Transm 1975; 36: 303–26.CrossRefGoogle Scholar
  38. [38]
    Riederer P, Przuntek H, editors. MAO-B-inhibitor selegiline (R-(—)-deprenyl). A new therapeutic concept in the treatment of Parkinson’s disease. Vienna New York: Springer-Verlag, 1987.Google Scholar
  39. [39]
    Golbe LI. Deprenyl as symptomatic therapy in Parkinson’s disease. Clinical Neuropharmacology 1988; 11: 387–400.CrossRefGoogle Scholar
  40. [40]
    Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkowitz JA, Thompson K et al. Cognitive effects of l-deprenyl in Alzheimer’s disease. Psychopharmacology 1987; 91: 489–95.CrossRefGoogle Scholar
  41. [41]
    Mangoni A, Grassi MP, Frattola L, Piolti R, Bassi S, Motta A et al. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. Eur Neurol 1991; 31: 100–7.CrossRefGoogle Scholar
  42. [42]
    Youdim MBH, Finberg JPM. Monoamine oxidase ‘inhibitor antidepressants. In: Grahame-Smith DG, Hippius H, Winokur G, editors. Psychopharmacology 1/1. Amsterdam: Excerpta Medica, 1982: 37–51.Google Scholar
  43. [43]
    Jossan SS, d’Argy R, Gillberg PG, Aquilonius SM, Langström B, Halldin C et al. Localization of monoamine oxidase B in human brain by autoradiographical use of 11C-labelled l-deprenyl. J Neural Transm 1989; 77: 55–64.CrossRefGoogle Scholar
  44. [44]
    Riederer P, Jellinger K, Seemann D. Monoamine oxidase and parkinsonism. In: Tipton KF, Dostert P, Strolin-Benedetti M, editors. Monoamine oxidase and disease. London New York: Academic Press, 1984: 403–15.Google Scholar
  45. [45]
    Moll G, Moll R, Riederer P, Heinsen H, Denney RM. Distribution pattern of MAO-A and MAO-B in human substantia nigra shown by immunofluorescence cytochemistry on thin frozen section. Pharm Res Comm [Supplement 4] 1988; 20: 80–90.Google Scholar
  46. [46]
    Moll G, Moll R, Riederer P, Gsell W, Heinsen H, Denney RM. Immunofluorescence cytochemistry on thin sections of human substantia nigra for staining of monoamine oxidase A and monoamine oxidase B: a pilot study. J Neural Transm [Supplement] 1990; 32: 67–77.Google Scholar
  47. [47]
    Tipton KF, Dostert P, Strolin-Benedetti M, editors. Monoamine oxidase and disease: prospects for therapy with reversible inhibitors. London: Academic Press, 1984.Google Scholar
  48. [48]
    Tipton KF, Houslay MD, Garrett N. Allotropie properties of human brain monoamine oxidase. Nature 1973: 246: 213–4.Google Scholar
  49. [49]
    Glover V, Sandler M, Owen F, Riley GJ. Dopamine is a monoamine oxidase-B substrate in man. Nature 1977; 265: 80–1.CrossRefGoogle Scholar
  50. [50]
    Roth JA, Feor K. Deamination of dopamine and its 3-O-methylated derivative by human brain monoamine oxidase. Biochem Pharmacol 1978; 27: 1616–23.Google Scholar
  51. [51]
    Glover V, Elsworth JD, Sandler M. Dopamine oxidation and its inhibition by (—)-deprenyl. J Neural Transm [Supplement] 1980; 16: 163–71.Google Scholar
  52. [52]
    Garrick NA, Murphy DL. Differences in the preferential deamination of L-nor-epinephrine, dopamine and serotonin by MAO in rodent and primate brain. In: Usdin E, Weiner N, Youdim MBH, editors. Function and regulation of monoamine enzymes. London: Macmillan, 1981: 517–28.Google Scholar
  53. [53]
    O’Carroll A-M, Bardsley ME, Tipton KF. The oxidation of adrenaline and noradrenaline by the two forms of monoamine oxidase from human and rat brain. Neurochem Int 1986; 8: 493–500.CrossRefGoogle Scholar
  54. [54]
    Paterson I A, Juorio AV, Boulton AA. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem 1990; 55: 1827–37.CrossRefGoogle Scholar
  55. [55]
    Seiler N, Al-Therib MJ. Putrescine catabolism in mammalian brain. Biochem J 1974; 144: 29–35.Google Scholar
  56. [56]
    Seiler N. Polyamine metabolism and function in brain. Neurochem Int 1981; 3: 95–110.CrossRefGoogle Scholar
  57. [57]
    Zappia V, Pegg AE, editors. Progress in polyamine research. New York: Plenum Press, 1988.Google Scholar
  58. [58]
    Seiler N, Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr 1980; 221: 227–35.CrossRefGoogle Scholar
  59. [59]
    Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, Yahr MD. Pargyline and deprenyl prevent the neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in monkeys. European J Pharmacol 1984; 106: 209–10.CrossRefGoogle Scholar
  60. [60]
    Langston JW, Irwin I, Langston EB, Forno LS. Pargyline prevents MPTP-induced parkinsonism in primates. Science 1984; 225: 1480–82.CrossRefGoogle Scholar
  61. [61]
    Markey JP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonsim. Nature 1984; 311:464–7.CrossRefGoogle Scholar
  62. [62]
    Knoll J. R-(—)-deprenyl (Selegiline, MoverganR) facilitates the activity of the nigrostri- atal dopaminergic neuron. J Neural Transm [Supplement] 1987; 25: 45–66.Google Scholar
  63. [63]
    Gibson C. Inhibition of MAO B, but not MAO A, blocks DSP-4 toxicity on central NE neurons. European J Pharmacol 1987; 141: 135–8.CrossRefGoogle Scholar
  64. [64]
    Finnegan KT, Skratt J J, Irwin I, DeLanney LE, Langston JW. Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. European J Pharmacol 1990; 184: 119–26.CrossRefGoogle Scholar
  65. [65]
    Tatton WG, Greenwood CE. Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 1991; 30: 666–72.CrossRefGoogle Scholar
  66. [66]
    Heikkila RE, Cohen G. Further studies on generation of hydrogen peroxide by 6-hydroxy- dopamine: potentiation by ascorbic acid. Mol Pharmacol 1972; 8: 241–8.Google Scholar
  67. [67]
    Sachs CH, Johnsson G. Mechanism of action of 6-hydroxydopamine. Pharmacology 1975; 24: 1–25.Google Scholar
  68. [68]
    Graham DG, Tiffany SM, Bell WR, Gutknecht WF. Autooxidation versus covalent binding quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds towards CI300 neuroblastoma cells in vitro. Mol Pharmacol 1978; 14: 644–53.Google Scholar
  69. [69]
    Monterio HP, Winterbourn CC. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 1989; 38: 4177–82.CrossRefGoogle Scholar
  70. [70]
    Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991; 56: 1441–5.CrossRefGoogle Scholar
  71. [71]
    Ben-Shachar D, Youdim MBH. Intranigral iron injection induces behavioural and biochemical “parkinsonism” in the rat. J Neurochem 1991; 57: 2133–5.CrossRefGoogle Scholar
  72. [72]
    Gerlach M, Riederer P, Przuntek H, Youdim MBH. MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. European J Pharmacol [Molec Pharmacol Sect.] 1991; 208: 273–86.CrossRefGoogle Scholar
  73. [73]
    Knoll J. The pharmacology of (—)-deprenyl. J Neural Transm [Supplement] 1986; 22: 75–89.Google Scholar
  74. [74]
    Cohen G. The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence. J Neural Transm [Supplement] 1983; 19: 89–103.Google Scholar
  75. [75]
    Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 1989; 26: 689–90.CrossRefGoogle Scholar
  76. [76]
    Knoll J. The striatal dopamine dependency of life span in male rats, longevity study with (—)deprenyl. Mech Ageing Dev 1988; 46: 237–62.CrossRefGoogle Scholar
  77. [77]
    Carrillo M-C, Kanai S, Nokubo M, Kitani K. (—)-Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 1991; 48: 517–21.CrossRefGoogle Scholar
  78. [78]
    Clow A, Hussain T, Glover V, Sandler M, Dexter DT, Walker M. (—)-Deprenyl can induce soluble superoxide dismutase in rat striata. J. Neural Transm [Gen Sect.] 1991; 86: 77–80.CrossRefGoogle Scholar
  79. [79]
    Perumal AS, Tordzro WK, Katz M, Jackson-Lewis V, Cooper TB, Fahn S et al. Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brain. Brain Res 1989; 504: 139–44.CrossRefGoogle Scholar
  80. [80]
    Lodge D, Collingridge GL. The pharmacology of excitatory amino acids. Trends in Pharmacological Sciences, a special report. Cambridge: Elsevier, 1991.Google Scholar
  81. [81]
    Da Prada M, Kettler R, Burkhard WP, Lore HP, Haefely W. Some basic aspects of reversible inhibitors of monoamine oxidase-A. Acta Psychiatr Scand [Supplement] 1990; 360: 7–12.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  • M. Gerlach
  • P. Riederer
  • M. B. H. Youdim

There are no affiliations available

Personalised recommendations