Advertisement

Alzheimer’s Disease and l-Deprenyl: Rationales and Findings

  • P. N. Tariot
  • L. S. Schneider
  • S. V. Patel
  • B. Goldstein
Chapter
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

The purpose of this chapter is to summarize the theoretical and empirical bases for the administration of l-deprenyl (selegiline) to persons suffering from probable Alzheimer’s disease (AD). Rationales exist for both short-term and long-term treatment: for the sake of clarity, these will be presented separately.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci 1970; 11: 205–242.CrossRefGoogle Scholar
  2. [2]
    Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 1983; 219: 1184–1190.CrossRefGoogle Scholar
  3. [3]
    Thai LJ, Rosen W, Sharpless NS, Crystal H. Choline chloride fails to improve cognition in Alzheimer’s disease. Neurobiol Aging 1981; 2: 205–208.CrossRefGoogle Scholar
  4. [4]
    Beller SA, Overall JE, Swann AC. Efficacy of oral physostigmine in primary degenerative dementia. Psychopharmacology 1985; 87: 147–151.CrossRefGoogle Scholar
  5. [5]
    Eagger SA, Levy R, Sahakian BJ. Tacrine in Alzheimer’s Disease. Lancet 1991; 337: 989–992.CrossRefGoogle Scholar
  6. [6]
    Tariot PN, Cohen RM, Welkowitz JA, Sunderland T, Newhouse PA, Murphy DL, Weingartner H. Multiple-dose arecoline infusions in Alzheimer’s disease. Arch Gen Psychiatry 1988; 45: 901–905.CrossRefGoogle Scholar
  7. [7]
    Adolfsson R, Gottfries CG, Roos BE, Winblad B. Changes in the brain catecholamines in patients with dementia of the Alzheimer type. Br J Psychiatry 1979; 135: 216–223.CrossRefGoogle Scholar
  8. [8]
    Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernas S-A, Nordberg A, et al. Biochemical changes in dementia disorders of Alzheimer type. Neurobiol Aging 1983; 4: 261–271.CrossRefGoogle Scholar
  9. [9]
    Yates CM, Simpson J, Gordon A, Maloney AF, Allison Y, Ritchie IM, et al. Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer type dementia and Down’s syndrome. Brain Res 1983; 280: 119–126.CrossRefGoogle Scholar
  10. [10]
    Rosser MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M. Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 1984; 288: 961–964.CrossRefGoogle Scholar
  11. [11]
    Arai H, Kosaka K, Iizuka R. Changes of biogenic amines and their metabolites in post-mortem brains from patients with Alzheimer type dementia. J Neurochem 1984; 43: 388–393.CrossRefGoogle Scholar
  12. [12]
    Crow TJ, Cross AJ, Cooper SJ, Deakin JW, Ferrier IN, Johnson JA, et al. Neurotransmitter receptors and monamine metabolites in the brains of patients with Alzheimer’s type dementia and depression, and suicides. Neuropharmacology 1984; 23: 1561–1569.CrossRefGoogle Scholar
  13. [13]
    Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, et al. Neurochemical studies of early onset Alzheimer’s disease: possible influence on treatment. N Engl J Med 1985; 313: 7–11.CrossRefGoogle Scholar
  14. [14]
    Bondareff W, Mountjoy CQ, Roth M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurology 1982; 32: 164–168.CrossRefGoogle Scholar
  15. [15]
    Mann DMA, Lincoln J, Yates PO, Stamp JE, Toper S. Changes in the monoamine-con- taining neurons of the human CNS in senile dementia. Br J Psychiatry 1980; 136: 533–541.CrossRefGoogle Scholar
  16. [16]
    Volicer L, Langlais PJ, Mattson WR, Mark KA, Gamache PH. Serotoninergic system in dementia of the Alzheimer type. Arch Neurol 1985; 42: 1158–1161.CrossRefGoogle Scholar
  17. [17]
    Kety SF. The biogenic amines in the central nervous system: their possible roles in arousal, emotion, and learning. In: Schmitt FO, editor. The neurosciences: second study program. New York: Rockefeller Press 1970; 324–336.Google Scholar
  18. [18]
    Anzelark GM, Crow TJ, Greenway AP. Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science 1973; 181: 682–684.CrossRefGoogle Scholar
  19. [19]
    Gorelick DA, Bozewicz TR, Bridger WH. The role of catecholamines in animal learning and memory. In: Friedhoff AJ, editor. Catecholamines in behavior. New York: Plenum 1975; 1–30.CrossRefGoogle Scholar
  20. [20]
    Wise RA. Catecholamine theories of reward: a critical review. Brain Res 1978; 152: 215–247.CrossRefGoogle Scholar
  21. [21]
    Squire LR, Davis HP. The pharmacology of memory: a neurobiological perspective. Ann Rev Pharmacol Toxicol 1981; 21: 323–356.CrossRefGoogle Scholar
  22. [22]
    McGaugh JL. Hormonal influences on memory. Ann Rev Psychol 1983; 34: 297–323.CrossRefGoogle Scholar
  23. [23]
    Hopkins NF, Johnston D. Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 1984; 226: 350–352.CrossRefGoogle Scholar
  24. [24]
    Sunderland T, Tariot PN, Cohen RM, Weingartner H, Mueller EA, Murphy DL. Anticholinergic sensitivity in Alzheimer patients and age-matched controls. Arch Gen Psychiatry 1987; 44: 418–426.CrossRefGoogle Scholar
  25. [25]
    Busse E, Simpson D. Depression and anti-depressants in the elderly. J Clin Psychiatry 1983; 44: 35–39.Google Scholar
  26. [26]
    Neshkes RE, Gerner R, Jarvik LF, Mintz J, Joseph J, Linde S, et al. Orthostatic effect of imipramine and doxepin in depressed geriatric out-patients. J Clin Psychopharmacol 1985; 9: 102–106.Google Scholar
  27. [27]
    Salzman C. Caution urged in using MAOI’s with the elderly. Am J Psychiatry 1986; 143: 118–199.Google Scholar
  28. [28]
    Cohen RM, Sunderland T, Aulakh CS. Antidepressants in states of cognitive dysfunction. Drug Dev Res 1984; 4: 517–532.CrossRefGoogle Scholar
  29. [29]
    Gottfries CG. Alzheimer’s disease and senile dementia: biochemical characteristics and aspects of treatment. Psychopharmacology 1985; 86: 245–252.CrossRefGoogle Scholar
  30. [30]
    Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B. Phenylisopropylmethyl-propinylamine (E-250), a new psychic energizer. Arch Int Pharmacodyn 1965; 155: 154–164.Google Scholar
  31. [31]
    Knoll J. Deprenyl (selegiline): the history of its development and pharmacological action. Acta Neurol Scand 1983; (Supplement) 95: 57–80.CrossRefGoogle Scholar
  32. [32]
    Elsworth JD, Glover V, Reynolds GP, Sandler M, Lees AJ, Phuapradit P, et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the “cheese effect.” Psychopharmacology 1978; 57: 33–38.CrossRefGoogle Scholar
  33. [33]
    Knoll J. Analysis of the pharmacological effects of selective monoamine oxidase inhibitors. CIBA Foundation Symposium 1976; 39: 135–161.Google Scholar
  34. [34]
    Sunderland T, Mueller EA, Cohen RM, Jimerson DC, Pickar D, Murphy DL: Tyramine pressor sensitivity changes during deprenyl treatment. Psychopharmacology 1985; 86: 432–437.CrossRefGoogle Scholar
  35. [35]
    Quitkin FM, Liebowitz MR, Stewart JW, McGrath PJ, Harrison W, Rabkin JG, et al. l-Deprenyl in atypical depressives. Arch Gen Psychiatry 1984; 41: 777–781.CrossRefGoogle Scholar
  36. [36]
    Mann J J, Aarons SF, Wilner PJ, Keilp JG, Sweeney JA, Perlstein T, Frances AJ, et al. A controlled study of the antidepressant efficacy and side-effects of (—)-deprenyl. Arch Gen Psychiatry 1989; 46: 45–50.CrossRefGoogle Scholar
  37. [37]
    Reynolds GP, Elsworth JD, Blau A, Sandler M, Lees AJ, Stern GM. Deprenyl is metabolized to amphetamine and methamphetamine in man. Br J Clin Pharmacol 1978; 6: 542–543.CrossRefGoogle Scholar
  38. [38]
    Mendis N, Pare CMB, Sandler M, Glover B, Stern GM. Is the failure of (-)-deprenyl a selective MAO-B inhibitor to alleviate the pressure related to freedom from cheese effect? Psychopharmacology 1981; 73: 87–90.CrossRefGoogle Scholar
  39. [39]
    Karoum F, Chuang LW, Isler T, Calne DB, Liebowitz MR, Quitkin MR, et al. Metabolism of (—)-deprenyl to amphetamine and methamphetamine. Neurology 1982; 32: 503–509.CrossRefGoogle Scholar
  40. [40]
    Mendlewicz J, Youdim MBH. l-Deprenyl, a selective monoamine oxidase-type B inhibitor, in the treatment of depression: a double-blind evaluation. Br J Psychiatry 1983; 142: 508–511.CrossRefGoogle Scholar
  41. [41]
    Rossor MN, Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br Med J 1981; 283: 1588–1590.CrossRefGoogle Scholar
  42. [42]
    Appel SH. A unified hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol 1981; 10: 499–505.CrossRefGoogle Scholar
  43. [43]
    Jellinger K. Neuropathological substrates of Alzheimer’s disease and Parkinson’s disease. J Neural Transm 1987; (Supplement) 24: 109–129.Google Scholar
  44. [44]
    Ditter SM, Mirra SS. Neuropathologic and clinical features of Parkinson’s disease in Alzheimer’s disease patients. Neurology 1987; 37: 754–760.CrossRefGoogle Scholar
  45. [45]
    Eisler T, Teravainen H, Nelson R, Krebs H, Weise V, Lake CR, et al. Deprenyl in Parkinson disease. Neurology 1981; 31: 19–23.CrossRefGoogle Scholar
  46. [46]
    Golbe LI. Deprenyl as symptomatic therapy in Parkinson’s disease. Clin Neuropharmacol 1988; 11: 387–400.CrossRefGoogle Scholar
  47. [47]
    The Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–1371.CrossRefGoogle Scholar
  48. [48]
    Robinson DS, Davis JM, Nies A, Colburn RW, Davis JN, Bourne HR, et al. Ageing, monoamines, and monoamine oxidase levels. Lancet 1972; i: 290–291.CrossRefGoogle Scholar
  49. [49]
    Adolfsson R, Gottfries CG, Oreland L, Wieberg A, Winblad B. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 1988; 17: 1029–1034.Google Scholar
  50. [50]
    Knoll J. Selective inhibition of B-type monoamine oxidase in the brain. A drug study to improve the quality of life in senesence. In: Weverling JA, editor. Strategy in drug research. Amsterdam: Elsevier Science Publishers 1982; 107–135.Google Scholar
  51. [51]
    Reinikaninen KJ, Paljarvi L, Halonen T, Mallminen O, Kosma V, Laakso M, Riekkinen J. Dopaminergic system in monoamine oxidase B activity in Alzheimer’s disease. Neurobiol Aging 1988; 9: 245–252.CrossRefGoogle Scholar
  52. [52]
    Martini E, Pataky I, Szilagyi K, Ventor V. Brief information on an early phase-II study with deprenyl in demented patients. Pharmacopsychiatry 1987; 20: 256–257.CrossRefGoogle Scholar
  53. [53]
    Shader RI, Harmatz JS, Salzman C. A new scale for clinical assessment (SCAG). J Amer Geriatr Soc 1969; 22: 107–113.Google Scholar
  54. [54]
    Schneider LS, Pollack VE, Zemansky MF, Gleason RP, Palmer R, Sloane RB. A pilot study of low dose l-deprenyl in Alzheimer’s disease. J Geriatr Psychiatry Neurol 1991; 4: 143–148.CrossRefGoogle Scholar
  55. [55]
    Overall JE, Beller SA. The brief psychiatric rating scale (BPRS) in geropsychiatric research: I. Factor structure on an in-patient unit. J Gerontol 1984; 39: 187–193.CrossRefGoogle Scholar
  56. [56]
    Alexopoulos GS, Abrams RC, Young RC, Shamoian CA. Cornell scale for depression in dementia. Biol Psychiatry 1988; 23: 271–284.CrossRefGoogle Scholar
  57. [57]
    Buschke H, Fuld PA. Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology 1974; 24: 1019–1025.CrossRefGoogle Scholar
  58. [58]
    Goad DL, Davis CM, Liem P, Fuselier CC, McCormack JR, Olsen KM. The use of selegiline in Alzheimer’s patients with behavior problems. J Clin Psychiatry 1991; 52: 342–345.Google Scholar
  59. [59]
    Reisberg B, Borenstein J, Salob SP, Ferris SH, Franssen E, Georgotas A. Behavioral symptoms in Alzheimer’s disease: phenomenology and treatment. J Clin Psychiatry 1987; 48 (Supplement): 9–15.Google Scholar
  60. [60]
    Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–198.CrossRefGoogle Scholar
  61. [61]
    Zarit SH. Issues and directions in family intervention research. In: Light E, Lebowitz B, editors. Alzheimer’s disease treatment and family stress: directions for research. Washington, D.C.: U.S. Government Printing Office. DHHS (ADM) 89–1569, 1989, Rockville, MD, USA, 458–486.Google Scholar
  62. [62]
    Tariot PN, Cohen RM, Sunderland, T, Newhouse PA, Yount D, Mellow AM, et al. l-Deprenyl in Alzheimer’s disease: preliminary evidence for behavioral change with monamine oxidase B inhibition. Arch Gen Psychiatry 1987; 44: 427–433.CrossRefGoogle Scholar
  63. [63]
    Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkowitz JA, Thompson K, Cohen RM. Cognitive effects of l-deprenyl in Alzheimer’s disease. Psychopharmacology 1987; 91: 489–495.CrossRefGoogle Scholar
  64. [64]
    Sunderland T, Tariot PN, Cohen RM, Newhouse P, Mellow AM, Mueller EA, Murphy DLM. A multidose study of the effects of l-deprenyl on CSF monoamine metabolites in patients with Alzheimer’s disease. Psychopharmacology 1987; 91: 293–296.CrossRefGoogle Scholar
  65. [65]
    Piccinin GL, Finali G, Piccirilli M. Neuropsychological effects of l-deprenyl on Alzheimer’s type dementia. Clin Neuropharmacol 1990; 13: 147–163.CrossRefGoogle Scholar
  66. [66]
    Sunderland T, Molchan SE, LaLonde FM, Lawlor BA, Martinez RA, Martinson HF, Vitiello B. Combination pharmacotherapy in Alzheimer’s disease: Deprenyl plus physostigmine (abstract). Am College Neuropsychopharmacol 1989.Google Scholar
  67. [67]
    Schneider LS, Olin JT, Pawluczyk S. Combination of l-deprenyl and Cholinesterase inhibitor in Alzheimer’s disease: a double-blind, crossover, pilot study. Am J Psychiatry, 1992, in press.Google Scholar
  68. [68]
    Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141: 1356–1364.Google Scholar
  69. [69]
    Campi N, Todeschini GP, Scarzella L. Selegiline vs. L-acetylcarnitine in the treatment of Alzheimer-type dementia. Clin Therap 1990; 12: 306–314.Google Scholar
  70. [70]
    Monteverde A, Gnemmi P, Rossi F, Monteverde A. Selegiline in the treatment of mild to moderate Alzheimer-type dementia. Clin Therap 1990; 12: 315–332.Google Scholar
  71. [71]
    Falsaperla A, Preti P, Oliani C. Selegiline vs. Oxiracetam in patients with Alzheimer-type dementia. Clin Therap 1990; 12: 376–384.Google Scholar
  72. [72]
    Martucci N, Fabbrini G, Fioravanti M. Monoaminossidasi e demenza: trattamento con un inibitore dell’attivita MAO-B. Giornale D Neuropsicofarmacologia 1989; 11 (6): 265–269.Google Scholar
  73. [73]
    Agnoli A, Martucci N, Fabbrini G, Buckley A, Fioravanti M. Monoamine oxidase in dementia: treatment with an inhibitor of MAO-B activity. Dementia 1990; 1: 109–114.Google Scholar
  74. [74]
    Loeb C, Albano C. Selegiline: A new approach to DAT treatment. European conference on Parkinson’s disease and extrapyramidal disorders 1990 (abstract).Google Scholar
  75. [75]
    Mangoni A, Grassi MP, Fratolla L, Piolti R, Bassi S, Motta A, et al. Effects of a MAO-B inhibitor in the treatment of Alzheimer’s disease. Eur Neurol 1991; 31: 100–107.CrossRefGoogle Scholar
  76. [76]
    Filip V, Kolibas E, Ceskova E, Hronek J, Novotna D, Novotny V, et al. Selegiline in mild SDAT: results of the multi-center, double-blind, placebo-controlled trial. Am Col Neuropsychopharm 1991 (abstract).Google Scholar
  77. [77]
    Tariot PN, Sunderland T, Cohen RM, Newhouse PA, Mueller EA, Murphy DL. Tranylcypromine compared with l-deprenyl in Alzheimer’s disease. J Clin Psychopharmacol 1988; 8: 23–27.Google Scholar
  78. [78]
    Varga E, Tringer L. Clinical trial of a new type of promptly acting psychoenergetic agent. Acta Med Acad Sci Hung 1967; 23: 289–295.Google Scholar
  79. [79]
    Volicer L, Crino PB. Review: Involvement of free radicals in dementia of the Alzheimer-type: a hypothesis. Neurobiol Aging 1990; 11: 567–571.CrossRefGoogle Scholar
  80. [80]
    LeBel CP, Bondy SC. Mini-review: oxygen radicals: common mediators of neurotoxicity. Neurotoxicol Teratol 1991; 13: 341–346.CrossRefGoogle Scholar
  81. [81]
    Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markes- bery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci 1991; 88: 10540–10543.CrossRefGoogle Scholar
  82. [82]
    Cohen G. Oxidative Stress in the Nervous System. In: Sies H, editor. Oxidative stress. London: Academic Press 1985; 383–402.CrossRefGoogle Scholar
  83. [83]
    Jonsson G. Studies on the mechanisms of 6-hydroxydopamine cytotoxicity. Medical Biology 1976; 54: 406–420.Google Scholar
  84. [84]
    Graham DG. Catecholamine toxicity: A proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicol 1984; 5: 83–96.Google Scholar
  85. [85]
    Heikkila R, Cohen G. Inhibition of biogenic amine uptake by hydrogen peroxide: a mechanism for toxic effects of 6-hydroxydopamine. Science 1971; 172: 1257–1258.CrossRefGoogle Scholar
  86. [86]
    Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 1989; 26: 689–690.CrossRefGoogle Scholar
  87. [87]
    Bowen DM, Davison AN. Can the pathophysiology of dementia lead to rational therapy? In: Crook T, Bartus R, Ferris S, Gershon S, editors. Treatment development strategies for Alzheimer’s disease. Madison, Conn.: Powley Assoc 1986; 35–66.Google Scholar
  88. [88]
    Tetrud JW, Lansgton JW. R-(-)-deprenyl as a possible protective agent in Parkinson’s disease. J Neurol Transm 1987; (Supplement) 25: 69–79.Google Scholar
  89. [89]
    Shoulson I. Experimental therapeutics directed at the pathogenesis of Parkinson’s disease. In: Handbook of experimental pharmacology: drugs for the treatment of Parkinson’s disease. Calen DB, editor. Berlin: Springer-Verlag 1989; 289–305.CrossRefGoogle Scholar
  90. [90]
    Langston JW. The etiology of Parkinson’s disease: new directions for research. In: Parkinson’s disease and movement disorders. Jankovic J, Tolosa E, editors. Baltimore-Munich: Urban and Schwarzenberg 1988; 75–85.Google Scholar
  91. [91]
    Langston JW, Irwin I, Langston EB. Pargyline prevents MPTP-induced parkinsonism in primates. Science 1984; 225: 1480–1482.CrossRefGoogle Scholar
  92. [92]
    Heikkila RF, Manzion L, Cabbat FS, Duvoisin RC. Protection against the dopaminergic neurotoxicity of MPTP by monoamine oxidase inhibitors. Nature 1984; 311: 467–469.CrossRefGoogle Scholar
  93. [93]
    Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, Yahr M. Pargyline and deprenyl prevent the neurotoxicity of MPTP in monkeys. Eur J Pharmacol 1984; 106: 209–219.CrossRefGoogle Scholar
  94. [94]
    Barbeau A, Roy M, Cloutier T, Plasse L, Paris S. Environmental and genetic factors in the etiology of Parkinson’s disease. In: Yahr M, Bergmann K, editors. Advances in neurology. Vol 45: Parkinson’s disease. New York: Raven Press 1987.Google Scholar
  95. [95]
    Rajput AH, Stern W, Christ A, Laverty W. Etiology of Parkinson’s disease: environmental factors. Neurology 1984; 34: 207.CrossRefGoogle Scholar
  96. [96]
    Tetrud JW, Langston JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–522.CrossRefGoogle Scholar
  97. [97]
    Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Martin J. Increased life expectancy resulting from addition of l-deprenyl to Madopar treatment in Parkinson’s disease: a long-term study. J Neurol Transm 1985; 64: 113–127.CrossRefGoogle Scholar
  98. [98]
    Knoll J. Striatal dopamine dependency of life span in male rats. Longevity study with (—)-deprenyl. Mechanisms of Aging and Development 1988; 46: 237–262.CrossRefGoogle Scholar
  99. [99]
    Milgram NW, Racine RJ, Nellis P, Mendonca I, Ivy GO. Maintenance on l-deprenyl prolongs life in aged male rats. Life Sci 1990; 47: 415–420.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  • P. N. Tariot
  • L. S. Schneider
  • S. V. Patel
  • B. Goldstein

There are no affiliations available

Personalised recommendations