Advertisement

Pharmacokinetics and Clinical Pharmacology of Selegiline

  • E. H. Heinonen
  • M. I. Anttila
  • R. A. S. Lammintausta
Chapter
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Selegiline (formerly called l-(—)-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase (MAO) type B. In the human brain dopamine is metabolized via MAO-B [1]. By inhibiting this enzyme the dopamine concentration in the brain is increased [2]. Selegiline has also been shown to inhibit the uptake of dopamine and noradrenaline [3]. Due to these properties, selegiline is widely used in the treatment of Parkinson’s disease (PD) as either an adjuvant to levodopa therapy or alone in the early phase of the disease [4–6]. Preliminary results have suggested that selegiline may also alleviate the symptoms of Alzheimer’s disease [7, 8]. High dosages (up to 50 mg daily) have been successfully used in the treatment of depression [9]. In the following the pharmacokinetics, metabolism, and interactions of selegiline will be reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Glover V, Eisworth JD, Sandler M. Dopamine oxidation and its inhibition by (—)- deprenyl in man. J Neural Transm 1980; [Supplement] 16: 163–172.Google Scholar
  2. [2]
    Riederer P, Youdim M. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated 5 with l-deprenyl. J Neurochemistry 1986; 46: 1359–1365.CrossRefGoogle Scholar
  3. [3]
    Knoll J. The pharmacology of selegiline ((—)-deprenyl). New aspects. Acta Neurol Scand 1989; 126: 83–91.CrossRefGoogle Scholar
  4. [4]
    The Parkinson study group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–1371.CrossRefGoogle Scholar
  5. [5]
    Heinonen EH, Rinne UK. Selegiline in the treatment of Parkinson’s disease. Acta Neurol Scand 1989; 126: 103–111.Google Scholar
  6. [6]
    Myllylä W, Sotaniemi KA, Vuorinen JA, Heinonen EH. Selegiline as primary treatment in de novo parkinsonian patients. Neurology 1992; 42: 339–343.CrossRefGoogle Scholar
  7. [7]
    Tariot PN, Cohen RM, Sunderland T et al. l-Deprenyl in Alzheimer’s disease. Preliminary evidence for behavioral change with monoamine oxidase B inhibition. Arch Gen Psychiatry 1987; 44: 427–433.CrossRefGoogle Scholar
  8. [8]
    Mangoni A, Grassi MP, Frattola L et al. Effects of MAO-B inhibitor in the treatment of Alzheimer disease. Eur Neurol 1991; 31: 100–107.CrossRefGoogle Scholar
  9. [9]
    Mann JJ, Aarons SF, Wilner PJ et al. A controlled study of the antidepressant efficacy and side effects of (—)-deprenyl. Arch Gen Psychiatry 1989; 46: 45–50.CrossRefGoogle Scholar
  10. [10]
    Magyar K, Tóthfalusi L. Pharmacokinetic aspects of deprenyl effects. Pol J Pharmacol Pharm 1984; 36: 373–384.CrossRefGoogle Scholar
  11. [11]
    Benakis A. Pharmacokinetic study in man of 14C-Jumex. [A study report.] Turku, Finland: Orion Corporation Farmos, 1981.Google Scholar
  12. [12]
    MacGregor RR, Halldin C, Fowler JS et al. Selective, irreversible in vivo binding of [nC]clorgyline and [nC]-l-deprenyl in mice: potential for measurement of functional monoamine oxidase activity in brain using positron emission tomography. Biochem Pharmac 1985; 34(17): 3207–3210.CrossRefGoogle Scholar
  13. [13]
    Szökö É, Kalász H, Kerecsen L, Magyar K. Binding of (—)-deprenyl to serum proteins. Pol J Pharmacol Pharm 1984; 36: 413–421.Google Scholar
  14. [14]
    Kalász H, Kerecsen L, Knoll J, Pucsok J. Chromatographic studies on the binding, action and metabolism of (—)-deprenyl. J Chromatogr 1990; 499: 589–599.CrossRefGoogle Scholar
  15. [15]
    Fowler JS, MacGregor RR, Wolf AP et al. Mapping human brain monoamine oxidase A and B with nC-labeled suicide inactivators and PET. Science 1987; 235: 481–485.CrossRefGoogle Scholar
  16. [16]
    Oreland L, Arai Y, Stenström A. The effect of deprenyl (selegiline) on intra- and extraneuronal dopamine oxidation. Acta Neurol Scand 1983; [Supplement] 95: 81–85.CrossRefGoogle Scholar
  17. [17]
    Jossan SS, d’Argy R, Gillberg PG et al. Localization of monoamine oxidase B in human brain by autoradiography use of 11C-labelled l-deprenyl. J Neural Transm 1989; 77: 55–64.CrossRefGoogle Scholar
  18. [18]
    Jossan SS, Gillberg PG, d’Argy R et al. Quantitative localization of human brain monoamine oxidase B by large section autoradiography using l-[3H] deprenyl. Brain Res 1991; 547: 69–76.CrossRefGoogle Scholar
  19. [19]
    Youdim MBH. The active centers of monoamine oxidase types “A” and “B”: binding with (14C)-clorgyline and (l4C)-deprenyl. J Neural Transm 1978; 43: 199–208.CrossRefGoogle Scholar
  20. [20]
    Riederer P, Reynolds GP. Deprenyl is a selective inhibitor of brain MAO-B in the long-term treatment of Parkinson’s disease. Br J Clin Pharmac 1980; 9: 98–99.CrossRefGoogle Scholar
  21. [21]
    Sunderland T, Mueller A, Cohen RM, Jimerson DC, Pickar D, Murphy DL. Tyramine pressor sensitivity changes during deprenyl treatment. Psychopharmacology 1985; 86: 432–437.CrossRefGoogle Scholar
  22. [22]
    Elsworth JD, Glover V, Reynolds G et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology 1978; 57: 33–38.CrossRefGoogle Scholar
  23. [23]
    Blackwell B. Hypertensive crises due to monoamine-oxidase inhibitors. Lancet 1963; 2: 849–850.CrossRefGoogle Scholar
  24. [24]
    Riederer P, Youdim MBH, Rausch WD, Birkmayer W, Jellinger K, Seemann D. On the Mode of Action of l-Deprenyl in the Human Central Nervous System. J Neural Transm 1978; 43: 217–226.CrossRefGoogle Scholar
  25. [25]
    Lee DH, Mendoza M, Dvorozniak MT, Chung E, van Woert MH, Yahr MD. Platelet monoamine oxidase in Parkinson patients: effect of l-deprenyl therapy. J Neural Transm 1989; 1: 189–194.CrossRefGoogle Scholar
  26. [26]
    Simpson GM, Frederickson E, Palmer R, Pi E, Sloane RB, White K. Platelet monoamine oxidase inhibition by deprenyl and tranylcypromine: implications for clinical use. Biol Psychiatry 1985; 20: 680–684.CrossRefGoogle Scholar
  27. [27]
    Birkmayer W, Riederer P, Ambrozi L, Youdim MBH. Implications of combined treatment with ‘Madopar’ and l-deprenyl J in Parkinson’s disease. Lancet 1977; i: 439–443.CrossRefGoogle Scholar
  28. [28]
    Oreland L, Johansson F, Ekstedt J. Dose regimen of deprenyl (selegiline) and platelet MAO activities. Acta Neurol Scand 1983; [Supplement] 95: 87–89.CrossRefGoogle Scholar
  29. [29]
    Teychenne PF, Parker S. Double-blind, crossover, placebo controlled trial of selegiline in Parkinson’s disease — an interim analysis. Acta Neurol Scand 1989; 126: 119–125.CrossRefGoogle Scholar
  30. [30]
    Feiner AE, Waldmeier PC. Cumulative effects of irreversible MAO inhibitors in vivo. Biochem Pharmac 1979; 28: 995–1002.CrossRefGoogle Scholar
  31. [31]
    Turkish S, Yu PH, Greenshaw AJ. Monoamine oxidase-B inhibition: a comparison of invivo and ex vivo measures of reversible effects. J Neural Transm 1988; 74: 141–148.CrossRefGoogle Scholar
  32. [32]
    Timar J. Recovery of MAO-B enzyme activity after (—)deprenyl (selegiline) pretreatment, measured in vivo. Acta Physiol Hung 1989; 74(3–4): 259–266.Google Scholar
  33. [33]
    Oreland L, Jossan SS, Hartvig P, Aquilonius SM, Langström B. Turnover of monoamine oxidase B (MAO-B) in pig brain by positron emission tomography using 11C-l-deprenyl. J Neural Transm 1990; [Supplement] 32: 55–59.Google Scholar
  34. [34]
    Arnett CD, Fowler JS, MacGregor RR et al. Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using l-[11C]deprenyl. J Neurochem 1987; 49: 522–527.CrossRefGoogle Scholar
  35. [35]
    Egashira T, Kamijo K. Synthetic rates of monoamine oxidase in rat liver after clorgyline or deprenyl administration. Jpn J Pharmacol 1979; 29: 677–680.CrossRefGoogle Scholar
  36. [36]
    McQuade PS. Analysis and the effects of some drugs on the metabolism of phenylethyl- amine and phenylacetic acid. Prog Neuropsychopharmacol Biol Psychiatry 1984; 8: 607–614.CrossRefGoogle Scholar
  37. [37]
    Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D. Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (—)deprenyl administration. J Neural Transm 1978; 43: 271–277.CrossRefGoogle Scholar
  38. [38]
    Ono H, Ito H, Fukuda H. 2-Phenylethylamine and methamphetamine enhance the spinal monosynaptic reflex by releasing noradrenaline from the terminals of descending fibers. Jpn J Pharmacol 1991; 55: 359–366.CrossRefGoogle Scholar
  39. [39]
    Fuxe K, Grobecker H, Jonsson J. Effect of beta-phenylethylamine on central and peripheral monoamine-containing neurons. Eur J Pharmacol 1967; 2: 203–207.Google Scholar
  40. [40]
    Boulton AA. Phenylethylaminergic modulation of catecholaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 1991; 15: 139–156.CrossRefGoogle Scholar
  41. [41]
    Yoshida T, Yamada Y, Yamamoto T, Kuroiwa Y. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 1986; 16: 129–136.CrossRefGoogle Scholar
  42. [42]
    Yoshida T, Oguro T, Kuroiwa Y. Hepatic and extrahepatic metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor of amphetamines in rats: sex and strain differences. Xenobiotica 1987; 17(8): 957–963.CrossRefGoogle Scholar
  43. [43]
    Meeker JE, Reynolds PC. Postmortem tissue methamphetamine concentrations following selegiline administration. J Anal Toxicol 1990; 14: 330–331.CrossRefGoogle Scholar
  44. [44]
    Schachter M, Marsden CD, Parkes JD, Jenner P, Testa B. Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J Neurol Neurosurg Psych 1980; 93: 1016–1021.CrossRefGoogle Scholar
  45. [45]
    Heinonen EH, Myllylä V, Sotaniemi K et al. Pharmacokinetics and metabolism of selegiline. Acta Neurol Scand 1989; 126: 93–99.Google Scholar
  46. [46]
    Elsworth JD, Sandler M, Lees AJ, Ward C, Stern GM. The contribution of amphetamine metabolites of (—)-deprenyl to its antiparkinsonian properties. J Neural Transm 1982; 54: 105–110.CrossRefGoogle Scholar
  47. [47]
    Ariens EJ. Stereochemistry: A source of problems in medicinal chemistry. Med Res Rev 1986; 6: 451–466.CrossRefGoogle Scholar
  48. [48]
    Borbe HO, Niebch G, Nickel B. Kinetic evaluation of MAO-B-activity following oral administration of selegiline and desmethyl-selegiline in rat. J Neural Transm 1990; [Supplement] 32: 131–137.Google Scholar
  49. [49]
    Cedarbaum JM, Silvestri M, Clark M, Harts A, Kutt H. l-Deprenyl, levodopa pharmacokinetics, and response fluctuations in Parkinson’s disease. Clin Neuropharmacol 1990; 13(1): 29–35.CrossRefGoogle Scholar
  50. [50]
    Russ H, Gerlach M, Dettner O, Kuhn W, Przuntek H. (—)-Deprenyl treatment of patients with Parkinson’s disease does not affect erythrocyte catechol-O-methyl transferase activity. J Neural Transm 1991; 3: 215–223.CrossRefGoogle Scholar
  51. [51]
    Heinonen E, Lammintausta R. A review of the pharmacology of selegiline. Acta Neurol Scand 1991; 84 [Supplement] 136: 44–59.CrossRefGoogle Scholar
  52. [52]
    Pare CMB, Mousawi MA, Sandler M, Glover V. Attempts to attenuate the ‘cheese effect’. J Affective Disord 1985; 9: 137–141.CrossRefGoogle Scholar
  53. [53]
    Suchowersky O, de Vries J. Possible interactions between deprenyl and prozac. Can J Neurol Sci 1990; 17(3): 352–353.Google Scholar
  54. [54]
    Ciraulo DA, Shader RI. Fluoxetine drug-drug interactions. II. J Clin Psychopharmacol 1990; 10: 213–217.Google Scholar
  55. [55]
    Jounela AJ, Mattila M J, Knoll J. Interaction of selective inhibitors of monoamine oxidase with pethidine in rabbits. Biochem Pharmacol 1977; 26: 806–808.CrossRefGoogle Scholar
  56. [56]
    Boden R, Botting R, Coulson P, Spanswick G. Effect of nonselective and selective inhibitors of monoamine oxidases A and B on pethidine toxicity in mice. Br J Pharmacol 1984; 82: 151–154.CrossRefGoogle Scholar
  57. [57]
    Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet 1991; 337: 246.CrossRefGoogle Scholar
  58. [58]
    Sechi G, Tanda F, Mutani R. Fatal hyperpyrexia after withdrawal of levodopa. Neurology 1984; 34: 249–251.CrossRefGoogle Scholar
  59. [59]
    Tojo K, Iizuka K, Honda H, Shimojo S, Miyahara T. A case of neuroleptic malignant syndrome due to levodopa withdrawal. Jikeikai Med J 1989; 36: 195–202.Google Scholar
  60. [60]
    Pfeiffer RF, Sucha EL. “On-off”-induced lethal hyperthermia. Mov Disord 1989; 4: 338–341.CrossRefGoogle Scholar
  61. [61]
    Reynolds GP, Riederer P, Sandler M, Jellinger K, Seeman D. Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after (—)-deprenyl administration. J Neural Transm 1978; 43: 271–277.CrossRefGoogle Scholar
  62. [62]
    Karoum F, Chuang L-W, Eisler T et al. Metabolism of (—)-deprenyl to amphetamine and methamphetamine may be responsible for deprenyl’s therapeutic benefit: A biochemical assessment. Neurology 1982; 32: 503–509.CrossRefGoogle Scholar
  63. [63]
    Liebowitz MR, Karoum F, Quitkin FM et al. Biochemical effects ofl-deprenyl in atypical depressives. Biol Psychiatry 1985; 20: 558–565.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1993

Authors and Affiliations

  • E. H. Heinonen
  • M. I. Anttila
  • R. A. S. Lammintausta

There are no affiliations available

Personalised recommendations