Advertisement

Quadraturrest, Approximation und Chebyshev-Polynome

  • Werner Haußmann
  • Karl Zeller
Chapter
Part of the ISNM 57: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique book series (ISNM, volume 57)

Abstract

The remainder of a quadrature formula is often treated by introducing derivatives of high order. But in many cases it is preferable to avoid derivatives and to use more robust methods. One can consider series expansions (Hilbert space, holomorphy). But there are simpler methods, employing polynomials, approximation, grids. In connection with quadrature such methods have been worked out by several authors; we mention Stroud, Locher-Zeller, Riess-Johnson and especially the recent book by Brass. In the present note we continue these investigations. We utilize approximation degrees of different order (in connection with Chebyshev expansions) and L-approximation. The general results are applied to the quadrature schemes of Clenshaw-Curtis and of Filippi. An outlook mentions extensions, cubature and fast approximation procedures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    BRASS, H. Eine Fehlerabschätzung zum Quadraturverfahren von Clenshaw und Curtis. Numer. Math. 21, 397–403 (1973).CrossRefGoogle Scholar
  2. [2]
    BRASS, H. Quadraturverfahren. Göttingen-Zürich Vandenhoeck und Ruprecht 1977.Google Scholar
  3. [3]
    BRASS, H., SCHMEISSER, G. Error Estimates for Interpolatory Quadrature Formulae. Numer. Math. 37, 371–386 (1981).CrossRefGoogle Scholar
  4. [4]
    CHENEY, E. W. Introduction to Approximation Theory. New York McGraw Hill 1966.Google Scholar
  5. [5]
    DAVIS, P. J., RABINOWITZ, P. Methods of Numerical Integration. New York Academic Press 1975.Google Scholar
  6. [6]
    DE BOOR, C. The Approximation of Functions and Linear Functionals Best vs. Good Approximation. Proc. Symp. Appl. Math., Vol. 22, 53–70 (1978).CrossRefGoogle Scholar
  7. [7]
    ENGELS, H. Numerical Quadrature and Cubature. London Academic Press 1980.Google Scholar
  8. [8]
    LOCHER, F. Fehlerabschätzungen für das Quadraturverfahren von Clenshaw und Curtis. Computing 4, 304–315 (1969).CrossRefGoogle Scholar
  9. [9]
    LOCHER, F. Optimale definite Polynome und Quadraturformeln. Internat. Ser. Numer. Math. 17, 111–121. Basel-Stuttgart Birkhäuser 1973.Google Scholar
  10. [10]
    LOCHER, F., ZELLER, K. Approximationsgüte und numerische Integration. Math. Z. 104, 249–251 (1968).CrossRefGoogle Scholar
  11. [11]
    LORENTZ, G. G. Approximation of Functions. New York Holt, Rinehart and Winston 1966.Google Scholar
  12. [12]
    MÜLLER, M. W. Approximationstheorie. Wiesbaden Akademische Verlagsgesellschaft 1978.Google Scholar
  13. [13]
    RIESS, R. D., JOHNSON, L. W. Error Estimates for Clenshaw-Curtis Quadrature. Numer. Math. 18, 345–353 (1972).CrossRefGoogle Scholar
  14. [14]
    SCHERER, R., ZELLER, K. Floppy vs. Fussy Approximation. Tagungsbericht Oberwolfach 1981 (in Internat. Ser. Numer. Math.).Google Scholar
  15. [15]
    STROUD, A. H. Estimating Quadrature Errors for Functions with Low Continuity. J. SIAM Numer. Anal. 3, 420–424 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1982

Authors and Affiliations

  • Werner Haußmann
  • Karl Zeller

There are no affiliations available

Personalised recommendations