1. Abadie, J. (ed.) (1967), Nonlinear programming, North-Holland, AmsterdamGoogle Scholar
  2. Abadie, J. (ed.) (1970), Integer and nonlinear programming, North-Holland, AmsterdamGoogle Scholar
  3. Abadie, J. (1972), Simplex-like methods for non-linear programming, in: Szegö ( 1972 ), S. 41–60Google Scholar
  4. Abe, K., M. Kimura (1970), Parallel algorithm for solving discrete optimization problems, IFAC Kyoto Symp. Syst. Engng. Appr. Comp. Contr., Aug. 1970, paper 35. 1Google Scholar
  5. Adachi, N. (1971), On variable-metric algorithms, JOTA 7, 391–410Google Scholar
  6. Adachi, N. (1973a), On the convergence of variable-metric methods, Computing 11, 111–123Google Scholar
  7. Adachi, N. (1973b), On the uniqueness of search directions in variable-metric algorithms, JOTA 11, 590–604Google Scholar
  8. Adams, R. J., A. Y. Lew (1966), Modified sequential random search using a hybrid computer, Univ. South. California, Electr. Engng. Dept., report, Mai 1966Google Scholar
  9. Ahrens, J. H., U. Dieter (1972), Computer methods for sampling from the exponential and normal distributions, CACM 15, 873–882Google Scholar
  10. Aizerman, M. A., E. M. Braverman, L. I. Rozonoer (1965), The Robbins-Monro process and the method of potential functions, ARC 26, 1882–1885Google Scholar
  11. Akaike, H. (1960), On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method, Ann. Inst. Stat. Math. Tokyo 11, 1–16Google Scholar
  12. Aleksandrov, V. M., V. I. Sysoyev, V. V. Shemeneva (1968), Stochastic optimization, Engng. Cybern. 6, 5, 11–16Google Scholar
  13. Alland, A., (1970), Evolution und menschliches Verhalten, S. Fischer, Frankfurt/MainGoogle Scholar
  14. Altman, M. (1966), Generalized gradient methods of minimizing a functional, Bull. Acad. Polon. Sci. 14, 313–318Google Scholar
  15. Amann, H. (1968a), Monte-Carlo Methoden und lineare Randwertprobleme, ZAMM 48, 109–116Google Scholar
  16. Amann, H. (1968b), Der Rechenaufwand bei der Monte-Carlo Methode mit Informationsspeicherung, ZAMM 48, 128–131Google Scholar
  17. Anderson, N., A. Björck (1973), A new high order method of Regula Falsi type for computing a root of an equation, BIT 13, 253–264Google Scholar
  18. Anderson, R. L. (1953), Recent advances in finding best operating conditions, J. Amer. Stat. Assoc. 48, 789–798Google Scholar
  19. Andrews, H. C. (1972), Introduction to mathematical techniques in pattern recognition, Wiley-Interscience, New YorkGoogle Scholar
  20. Anscombe, F. J. (1959), Quick analysis methods for random balance screening experiments, Technometrics 1, 195–209Google Scholar
  21. Antonov, G. E., V. Ya. Katkovnik (1972), Method of synthesis of a class of random search algorithms, ARC 32, 990–993Google Scholar
  22. Aoki, M. (1971), Introduction to optimization techniques: fundamentals and applications of nonlinear programming, Macmillan, New YorkGoogle Scholar
  23. Apostol, T. M. (1957), Mathematical analysis: a modern approach to advanced calculus, Addison-Wesley, Reading, Mass.Google Scholar
  24. Arrow, K. J., L. Hurwicz (1956), Reduction of constrained maxima to saddle-point problems, in: Neyman (1956), Band 5, S. 1–20Google Scholar
  25. Arrow, K. J., L. Hurwicz (1957), Gradient methods for constrained maxima, Oper. Res. 5, 258–265Google Scholar
  26. Arrow, K. J., L. Hurwicz, H. Uzawa (eds.) (1958), Studies in linear and non-linear programming, Stanford Univ. Press, Stanford, Calif.Google Scholar
  27. Asai, K., S. Kitajima (1972), Optimizing control using fuzzy automata, Automatica 8, 101–104Google Scholar
  28. Ashby, W. R. (1960), Design for a brain, Wiley, New York, 2. Auflg.Google Scholar
  29. Ashby, W. R. (1965), Constraint analysis of many-dimensional relations, in: Wiener and Schad (1965), S. 10–18Google Scholar
  30. Ashby, W. R. (1968), Some consequences of Bremermann’s limit for information-processing systems, in: Oestreicher and Moore (1968), S. 69–76Google Scholar
  31. Avriel, M., D. J. Wilde (1966a), Optimality proof for the symmetric Fibonacci search technique, Fibonacci Quart. 4, 265–269Google Scholar
  32. Avriel, M., D. J. Wilde (1966b), Optimal search for a maximum with sequences of simultaneous function evaluations, Mgmt. Sci. 12, 722–731Google Scholar
  33. Avriel, M., D. J. Wilde (1968), Golden block search for the maximum of unimodal functions, Mgmt. Sci. 14, 307–319Google Scholar
  34. Bach, H. (1969), On the downhill method, CACM 12, 675–677Google Scholar
  35. Baer, R. M. (1962), Note on an extremum locating algorithm, Comp. J. 5, 193Google Scholar
  36. Balakrishnan, A. V. (ed.) (1972), Techniques of optimization, Academic Press, New YorkGoogle Scholar
  37. Balakrishnan, A. V., L. W. Neustadt (eds.) (1964), Computing methods in optimization problems, Academic Press, New YorkGoogle Scholar
  38. Balakrishnan, A. V., L. W. Neustadt (eds.) (1967), Mathematical theory of control, Academic Press, New YorkGoogle Scholar
  39. Balakrishnan, A. V., M. Contensou, B. F. DeVeubeke, P. Krée, J. L. Lions, N. N. Moiseev (eds.) (1970), Symposium on optimization, Springer, BerlinGoogle Scholar
  40. Bandler, J. W. (1969a). Optimization methods for computer-aided design, IEEE Trans. MTT-17, 533–552Google Scholar
  41. Bandler, J. W. (1969b), Computer optimization of inhomogeneous waveguide transformers, IEEE Trans. MTT-17, 563–571Google Scholar
  42. Bandler, J. W., C. Charalambous (1974), Nonlinear programming using minimax techniques, JOTA 13, 607–619Google Scholar
  43. Bandler, J. W., P. A. MacDonald (1969), Optimization of microwave networks by razor search, IEEE Trans. MTT-17, 552–562Google Scholar
  44. Bard, Y. (1968), On a numerical instability of Davidon-like methods, Math. Comp. 22, 665–666Google Scholar
  45. Bard, Y. (1970), Comparison of gradient methods for the solution of nonlinear parameter estimation problems, SIAM J. Numer. Anal. 7, 157–186Google Scholar
  46. Barnes, G. H., R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, R. A. Stokes (1968), The Illiac IV computer, IEEE Trans. C-17, 746–770Google Scholar
  47. Barnes, J. G. P. (1965), An algorithm for solving non-linear equations based on the secant method, Comp. J. 8, 66–72Google Scholar
  48. Barnes, J. L. (1965), Adaptive control as the basis of life and learning systems, Proc. IFAC Tokyo Symp. Syst. Engng. Contr. Syst. Design. Aug. 1965, S. 187–191Google Scholar
  49. Barr, D. R., N. L. Slezak (1972), A comparison of multivariate normal generators, CACM 15, 1048–1049Google Scholar
  50. Bass, R. (1972), A rank two algorithm for unconstrained minimization, Math. Comp. 26, 129–143Google Scholar
  51. Bauer, F. L. (1965), Elimination with weighted row combinations for solving linear equations and least squares problems, Numer. Math. 7, 338–352Google Scholar
  52. Bauer, W. F. (1958), The Monte Carlo method, SIAM J. 6, 438–451Google Scholar
  53. Beale, E. M. L. (1956), On quadratic programming. Nay. Res. Log. Quart. 6, 227–243Google Scholar
  54. Beale, E. M. L. (1958), On an iterative method for finding a local minimum of a function of more than one variable, Princeton Univ., Stat. Techn. Res. Group, techn. report 25, Princeton, N. J., Nov. 1958Google Scholar
  55. Beale, E. M. L. (1967), Numerical methods, in: Abadie ( 1967 ), 5. 133–205Google Scholar
  56. Beale, E. M. L. (1970), Computational methods for least squares, in: Abadie (1970), S. 213–228Google Scholar
  57. Beale, E. M. L. (1972), A derivation of conjugate gradients, in: Lootsma (1972a), S. 39–43Google Scholar
  58. Beamer, J. H., D. J. Wilde (1969), An upper bound on the number of measurements required by the contour tangent optimization technique, IEEE Trans. SSC-5, 27–30Google Scholar
  59. Beamer, J. H., D. J. Wilde (1970), Minimax optimization of unimodal functions by variable block search, Mgmt. Sci. 16, 529–541Google Scholar
  60. Beamer, J. H., D. J. Wilde (1973), A minimax search plan for constrained optimization problems, JOTA 12, 439–446Google Scholar
  61. Beckman, F. S. (1967), Die Lösung linearer Gleichungssysteme nach der Methode der konjugierten Gradienten, in: Ralston und Wilf ( 1967 ), S. 106–126Google Scholar
  62. Beckmann, M. (Hrsg.) (1971), Unternehmensforschung heute, Springer, BerlinGoogle Scholar
  63. Beier, W., K. Glaß (1968), Bionik: eine Wissenschaft der Zukunft, Urania, LeipzigGoogle Scholar
  64. Bekey, G. A., M. H. Gran, A. E. Sabroff, A. Wong (1966), Parameter optimization by random search using hybrid computer techniques, AFIPS Conf. Proc. 29, 191–200Google Scholar
  65. Bekey, G. A., W. J. Karplus (1971), Hybrid-Systeme, Berliner Union und Kohlhammer, StuttgartGoogle Scholar
  66. Bekey, G. A., R. B. McGhee (1964), Gradient methods for the optimization of dynamic system parameters by hybrid computation, in: Balakrishnan und Neustadt (1964), S. 305–327Google Scholar
  67. Bell, M., M. C. Pike (1966), Remark on algorithm 178(E4): direct search, CACM 9, 684–685Google Scholar
  68. Bellman, R. E. (1967), Dynamische Programmierung und selbstanpassende Regelprozesse, Oldenbourg, MünchenGoogle Scholar
  69. Beltrami, E. J., J. P. Indusi (1972), An adaptive random search algorithm for constrained minimization, IEEE Trans. C-21, 1004–1008Google Scholar
  70. Berg, R. L., N. W. Timofejew-Ressowski (1964), Ober Wege der Evolution des Genotyps, in: Ljapunov, Kämmerer und Thiele (1964b), S. 201–221Google Scholar
  71. Berlin, V. G. (1969), Acceleration of stochastic approximations by a mixed search method, ARC 30, 125–129Google Scholar
  72. Berlin, V. G. (1972), Parallel randomized search strategies, ARC 33, 398–403Google Scholar
  73. Berman, G. (1966), Minimization by successive approximation, SIAM J. Numer. Anal. 3, 123–133Google Scholar
  74. Berman, G. (1969), Lattice approximations to the minima of functions, )ACM 16, 286–294Google Scholar
  75. Bernard, J. W., F. J. Sonderquist (1959), Progress report on OPCON: Dow evaluates optimizing control, Contr. Engng. 6, 11, 124–128Google Scholar
  76. Bertram, J. E. (1960), Control by stochastic adjustment, AIEE Trans. II Appl. Ind. 78, 485–491Google Scholar
  77. Beveridge, G. S. G., R. S. Schechter (1970), Optimization: theory and practice, McGraw-Hill, New YorkGoogle Scholar
  78. Biggs, M. C. (1971), Minimization algorithms making use of non-quadratic properties of the objective function, JIMA 8, 315–327Google Scholar
  79. Biggs, M. C. (1973), A note on minimization algorithms which make use of nonquadratic properties of the objective function, JIMA 12, 337–338Google Scholar
  80. Birkhoff, G., S. MacLane (1965), A survey of modern algebra, Macmillan, New York, 3. Auflg.Google Scholar
  81. Blakemore, J. W., S. H. Davis, jr. (eds.) (1964), Optimization techniques, AIChE Chem. Engng. Progr. Symp. Ser. 60, no. 50Google Scholar
  82. Bledsoe, W. W. (1961), A basic limitation on the speed of digital computers, IRE Trans. EC-10, 530Google Scholar
  83. Blum, J. R. (1954a), Approximation methods which converge with probability one, Ann. Math. Stat. 25, 382–386Google Scholar
  84. Blum, J. R. (1954b), Multidimensional stochastic approximation methods, Ann. Math. Stat. 25, 737–744Google Scholar
  85. Boas, A. H. (1962), What optimization is all about, Chem. Engng. 69, 25, 147–152Google Scholar
  86. Boas, A. H. (1963a), How to use Lagrange multipliers, Chem. Engng. 70, 1, 95–98Google Scholar
  87. Boas, A. H. (1963b), How search methods locate optimum in univariable problems, Chem. Engng. 70, 3, 105–108Google Scholar
  88. Boas, A. H. (1963c), Optimizing multivariable functions, Chem. Engng. 70, 5, 97–104Google Scholar
  89. Boas, A. H. (1963d), Optimization via linear and dynamic programming, Chem. Engng. 70, 7, 85–88Google Scholar
  90. Bocharov, I. N., A. A. Feldbaum (1962), An automatic optimizer for the search for the smallest of several minima: a global optimizer, ARC 23, 260–270Google Scholar
  91. Boltjanski, W. G. (1972), Mathematische Methoden der optimalen Steuerung, Hanser, MünchenGoogle Scholar
  92. Booth, A. D. (1949), An application of the method of steepest descents to the solution of systems of non-linear simultaneous equations, Quart. J. Mech. Appl. Math. 2, 460–468Google Scholar
  93. Booth, A. D. (1955), Numerical methods, Butterworths, LondonGoogle Scholar
  94. Booth, R. S. (1967), Location of zeros of derivatives, SIAM J. Appl. Math. 15, 1496–1501Google Scholar
  95. Boothroyd, J. (1965), Certification of algorithm 2: Fibonacci search, Comp. Bull. 9, 105–108Google Scholar
  96. Box, G. E. P. (1957), Evolutionary operation: a method for increasing industrial productivity, Appl. Stat. 6, 81–101Google Scholar
  97. Box, G. E. P., D. W. Behnken (1960), Simplex-sum designs: a class of second order rotatable designs derivable from those of first order, Ann. Math. Stat. 31, 838–864Google Scholar
  98. Box, G. E. P., N. R. Draper (1969), Evolutionary operation: a statistical method for process improvement, Wiley, New YorkGoogle Scholar
  99. Box, G. E. P., J. S. Hunter (1957), Multi-factor experimental designs for exploring response surfaces, Ann. Math. Stat. 28, 195–241Google Scholar
  100. Box, G. E. P., W. G. Hunter, J. F. MacGregor, J. Erjavec (1973), Some problems associated with the analysis of multiresponse data, Technometrics 15, 33–51Google Scholar
  101. Box, G. E. P., M. E. Muller (1958), A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611Google Scholar
  102. Box, G. E. P., K. B. Wilson (1951), On the experimental attainment of optimum conditions, J. Roy. Stat. Soc. B, Methodological, 8, 1–45Google Scholar
  103. Box, M. J. (1965), A new method of constrained optimization and a comparison with other methods, Comp. J. 8, 42–52Google Scholar
  104. Box, M. J. (1966), A comparison of several current optimization methods and the use of transformations in constrained problems, Comp. J. 9, 67–77Google Scholar
  105. Box, M. J., D. Davies, W. H. Swann (1969), Nonlinear optimization techniques, ICI Monograph 5, Oliver and Boyd, EdinburghGoogle Scholar
  106. Bracken, J., G. P. McCormick (1970), Ausgewählte Anwendungen nichtlinearer Programmierung, Berliner Union und Kohlhammer, StuttgartGoogle Scholar
  107. Brajnes, S. N., V. B. Svennskij (1971), Probleme der Neurokybernetik und Neurobionik, G. Fischer, Stuttgart, 2. Auflg.Google Scholar
  108. Brandl, V. (1969), Ein wirksames Monte-Carlo-Schätzverfahren zur simultanen Behandlung hinreichend eng verwandter Probleme angewandt auf Fragen der Neutronenphysik, Tagungsbericht der Reaktortagung des Dt. Atomforums, Frankfurt/Main, April 1969, Sektion 1, S. 6–7Google Scholar
  109. Branin, F. H., jr., S. K. Hoo (1972), A method for finding multiple extrema of a function of n variables, in: Lootsma (1972a), S. 231–237Google Scholar
  110. Bremermann, H. J. (1962), Optimization through evolution and recombination, in: Yovits, Jacobi und Goldstein (1962), S. 93–106Google Scholar
  111. Bremermann, H. J. (1963), Limits of genetic control, IEEE Trans. MIL-7, 200–205Google Scholar
  112. Bremermann, H. J. (1967), Quantitative aspects of goal-seeking self-organizing systems, in: Snell ( 1967 ), 5. 59–77Google Scholar
  113. Bremermann, H. J. (1968a), Numerical optimization procedures derived from biological evolution processes, in: Oestreicher und Moore (1968), S. 597–616Google Scholar
  114. Bremermann, H. J. (1968b), Principles of natural and artificial intelligence, AGARD report AD-684–952, Sept. 1968, S. 6c1–6c2Google Scholar
  115. Bremermann, H. J. (1968c), Pattern recognition, functionals, and entropy, IEEE Trans. BME-15, 201–207Google Scholar
  116. Bremermann, H. J. (1970), A method of unconstrained global optimization, Math. Biosci. 9, 1–15Google Scholar
  117. Bremermann, H. J. (1971), What mathematics can and cannot do for pattern recognition, in: Grösser und Klinke ( 1971 ), 5. 31–45Google Scholar
  118. Bremermann, H. J. (1973a), On the dynamics and trajectories of evolution processes, in: Locker (1973), S. 29–37Google Scholar
  119. Bremermann, H. J. (1973b), Algorithms and complexity of evolution and self-organization, Kybernetik-Kongreß der Dt. Ges. für Kybernetik and der Nachrichtentechn. Ges. im VDE, Nürnberg, März 1973Google Scholar
  120. Bremermann, H. J., L. Siu-Bik Lam (1970), Analysis of spectra with nonlinear superposition, Math. Biosci. 8, 449–460Google Scholar
  121. Bremermann, H. J., M. Rogson, S. Salaff (1965), Search by evolution, in: Maxfield, Callahan and Fogel (1965), S. 157–167Google Scholar
  122. Bremermann, H. J., M. Rogson, S. Salaff (1966), Global properties of evolution processes, in: Pattee, Edelsack, Fein and Callahan (1966), S. 3–41Google Scholar
  123. Brent, R. P. (1971), An algorithm with guaranteed convergence for finding a zero of a function, Comp. J. 14, 422–425Google Scholar
  124. Brent, R. P. (1973), Algorithms for minimization without derivatives, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  125. Bromberg, N. S. (1962), Maximization and minimization of complicated multivariable functions, AIEE Trans. I Comm. Electron. 80, 725–730Google Scholar
  126. Brooks, S. H. (1958), A discussion of random methods for seeking maxima, Oper. Res. 6, 244–251Google Scholar
  127. Brooks, S. H. (1959), A comparison of maximum-seeking methods, Oper. Res. 7, 430–457Google Scholar
  128. Brooks, S. H., M. R. Mickey (1961), Optimum estimation of gradient direction in steepest ascent experiments, Biometrics 17, 48–56Google Scholar
  129. Brown, K. M. (1969), A quadratically convergent Newton-like method based upon Gaussian elimination, SIAM J. Numer. Anal. 6, 560–569Google Scholar
  130. Brown, K. M., J. E. Dennis, jr. (1968), On Newton-like iteration functions: general convergence theorems and a specific algorithm, Numer. Math. 12, 186–191Google Scholar
  131. Brown, K. M., J. E. Dennis, jr. (1972), Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation, Numer. Math. 18, 289–297Google Scholar
  132. Brown, R. R. (1959), A generalized computer procedure for the design of optimum systems, AIEE Trans. I Comm. Electron. 78, 285–293Google Scholar
  133. Broyden, C. G. (1965), A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19, 577–593Google Scholar
  134. Broyden, C. G. (1967), Quasi-Newton methods and their application to function minimization, Math. Comp. 21, 368–381Google Scholar
  135. Broyden, C. G. (1969), A new method of solving nonlinear simultaneous equations, Comp. J. 12, 94–99Google Scholar
  136. Broyden, C. G. (1969), A new method of solving nonlinear simultaneous equations, Comp. J. 12, 94–99Google Scholar
  137. Broyden, C. G. (1970a), The convergence of single-rank quasi-Newton methods, Math. Comp. 24, 365–382Google Scholar
  138. Broyden, C. G. (1970b), The convergence of a class of double-rank minimization algorithms, part 1: general considerations, JIMA 6, 76–90Google Scholar
  139. Broyden, C. G. (1970c), The convergence of a class of double-rank minimization algorithms, part 2: the new algorithm, JIMA 6, 222–231Google Scholar
  140. Broyden, C. G. (1971), The convergence of an algorithm for solving sparse nonlinear systems, Math. Comp. 25, 285–294Google Scholar
  141. Broyden, C. G. (1972), Quasi-Newton methods, in: Murray ( 1972a ), 5. 87–106Google Scholar
  142. Broyden, C. G. (1973), Some condition-number bounds for the Gaussian elimination process, JIMA 12, 273–286Google Scholar
  143. Broyden, C. G., J. E. Dennis, jr., J. J. Moré (1973), On the local and superlinear convergence of quasi-Newton methods, JIMA 12, 223–245Google Scholar
  144. Broyden, C. G., M. P. Johnson (1972), A class of rank-1 optimization algorithms, in: Lootsma ( 1972a ), S. 35–38Google Scholar
  145. Bryson, A. E., Y. C. Ho (1969), Applied optimal control, Blaisdell, Waltham, MassGoogle Scholar
  146. Budne, T. A. (1959), The application of random balance designs, Technometrics 1, 139–155Google Scholar
  147. Buehler, R. J., B. V. Shah, O. Kempthorne (1961), Some properties of steepest ascent and related procedures for finding optimum conditions, Iowa State Univ., Stat. Lab., techn. report 1, Ames, Iowa, April 1961Google Scholar
  148. Buehler, R. J., B. V. Shah, O. Kempthorne (1964), Methods of parallel tangents, in: Blakemore and Davis (1964), S. 1–7Google Scholar
  149. Burkard, R. E. (1972), Methoden der Ganzzahligen Optimierung, Springer, WienGoogle Scholar
  150. Campbell, D. T. (1960), Blind variation and selective survival as a general strategy in knowledge-processes, in: Yovits and Cameron ( 1960 ), 5. 205–231Google Scholar
  151. Canon, M. D., C. D. Cullum, jr., E. Polak (1970), Theory of optimal control and mathematical programming, McGraw-Hill, New YorkGoogle Scholar
  152. Cantrell, J. W. (1969), Relation between the memory gradient method and the Fletcher-Reeves method, JOTA 4, 67–71Google Scholar
  153. Carroll, C. W. (1961), The created response surface technique for optimizing nonlinear restrained systems, Oper. Res. 9, 169–185Google Scholar
  154. Casey, J. K., R. C. Rustay (1966), AID: a general purpose computer program for optimization, in: Lavi and Vogl ( 1966 ), S. 81–100Google Scholar
  155. Casti, J., M. Richardson, R. Larson (1973), Dynamic programming and parallel computers, JOTA 12, 423–438Google Scholar
  156. Cauchy, A, (1847), Méthode générale pour la résolution des systèmes d’équations simultanées, Compt. Rend. Acad. Sci. URSS, Neue Serie 25, 536–538Google Scholar
  157. Céa, J. (1971), Optimisation: théorie et algorithmes, Dunod, ParisGoogle Scholar
  158. Chang, S. S. L. (1961), Synthesis of optimum control systems, McGraw-Hill, New YorkGoogle Scholar
  159. Chang, S. S. L. (1968), Stochastic peak tracking and the Kalman filter, IEEE Trans. AC-13, 750Google Scholar
  160. Chatterji, B. N., B. Chatterjee (1971), Performance optimization of a self-organizing feedback control system in presence of inherent coupling signals, Automatica 7, 599–605Google Scholar
  161. Chazan, D., W. L. Miranker (1970), A nongradient and parallel algorithm for unconstrained minimization, SIAM J. Contr. 8, 207–217Google Scholar
  162. Chichinadze, V. K. (1960), Logical design problems of self-optimizing and learning-optimizing control systems based on random searching, Proc. Ist IFAC Congr., Moskau, Juni-Juli 1960, Band 2, S. 653–657Google Scholar
  163. Chichinadze, V. K. (1967), Random search to determine the extremum of the functions of several variables, Engng. Cybern. 5, 1, 115–123Google Scholar
  164. Chichinadze, V. K. (1969), The Psi-transform for solving linear and nonlinear programming problems, Automatica 5, 347–356Google Scholar
  165. Chiek, F., D. HodéMové (1971), Evolution als Selbstregulation, G. Fischer, JenaGoogle Scholar
  166. Clayton, D. G. (1971), Algorithm AS-46: Gram-Schmidt orthogonalization, Appl. Stat. 20, 335–338Google Scholar
  167. Clegg, J. C. (1970), Variationsrechnung, Teubner, StuttgartGoogle Scholar
  168. Cochran, W. G., G. M. Cox (1950), Experimental designs, Wiley, New YorkGoogle Scholar
  169. Cockrell, L. D. (1969), A comparison of several random search techniques for multimodal surfaces, Proc. Nat. Electron. Conf., Chicago, Ill., Dez. 1969, S. 18–23Google Scholar
  170. Cockrell, L. D. (1970), On search techniques in adaptive systems, Ph. D. thesis, Purdue Univ., Lafayette, Ind., Juni 1970Google Scholar
  171. Cohen, A. I. (1972), Rate of convergence of several conjugate gradient algorithms, SIAM J. Numer. Anal. 9, 248–259Google Scholar
  172. Cohn, D. L. (1954), Optimal systems I: the vascular system, Bull. Math. Biophys. 16, 59–74Google Scholar
  173. Collatz, L., W. Wetterling (1971), Optimierungsaufgaben, Springer, Berlin, 2. Auflg.Google Scholar
  174. Colville, A. R. (1968), A comparative study on nonlinear programming codes, IBM New York Sci. Cntr., report 320–2949, Juni 1968Google Scholar
  175. Colville, A. R. (1970), A comparative study of nonlinear programming codes, in: Kuhn (1970), 5. 487–5b1Google Scholar
  176. Converse, A. O. (1970), Optimization, Holt, Rinehart and Winston, New YorkGoogle Scholar
  177. Cooper, L., D. Steinberg (1970), Introduction to methods of optimization, Saunders, PhiladelphiaGoogle Scholar
  178. Cornick, D. E., A. N. Michel (1972), Numerical optimization of distributed para-meter systems by the conjugate gradient method, IEEE Trans. AC-17, 358–362Google Scholar
  179. Courant, R. (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49, 1–23Google Scholar
  180. Courant, R., D. Hilbert (1968a), Methoden der mathematischen Physik, Band 1, Springer, Berlin, 3. Auflg.Google Scholar
  181. Courant, R., D. Hilbert (1968b), Methoden der mathematischen Physik, Band 2, Springer, Berlin, 2. Auflg.Google Scholar
  182. Cowdrey, D. R., C. M. Reeves (1963), An application of the Monte Carla method to the evaluation of some molecular integrals, Comp. J. 6, 277–286Google Scholar
  183. Cox, D. R. (1958), Planning of experiments, Wiley, New YorkGoogle Scholar
  184. Cragg, E. E., A. V. Levy (1969), Study on a supermemory gradient method for the minimization of functions, JOTA 4, 191–205Google Scholar
  185. Crippen, G. M., H. A. Scheraga (1971), Minimization of polypeptide energy, X: a global search algorithm, Arch. Biochem. Biophys. 144, 453–461Google Scholar
  186. Crockett, J. B., H. Chernoff (1955), Gradient methods of maximization, Pacif. J. Math. 5, 33–50Google Scholar
  187. Crowder, H., P. Wolfe (1972), Linear convergence to the conjugate gradient method, IBM T. J. Watson Res. Cntr., report RC-3330, Yorktown Heights, N. Y., Mai 1972Google Scholar
  188. Cryer, C. W. (1971), The solution of a quadratic programming problem using systematic overrelaxation, SIAM J. Contr. 9, 385–392Google Scholar
  189. Cullum, J. (1972), An algorithm for minimizing a differentiable function that uses only function values, in: Balakrishnan ( 1972 ), S. 117–127Google Scholar
  190. Curry, H. B. (1944), The method of steepest descent for non-linear minimization problems, Quart. Appl. Math. 2, 258–261Google Scholar
  191. Curtis, A. R., J. K. Reid (1974), The choice of step lengths when using differences to approximate Jacobian matrices, JIMA 13, 121–126Google Scholar
  192. Curtiss, J. H. (1956), A theoretical comparison of the efficiencies of two classical methods and a Monte Carlo method for computing one component of the solution of a set of linear algebraic equations, in: Meyer ( 1956 ), 5. 191–233Google Scholar
  193. Dambrauskas, A. P. (1970), The Simplex optimization method with variable step, Engng. Cybern. 8, 28–36Google Scholar
  194. Dambrauskas, A. P. (1972), Investigation of the efficiency of the Simplex method of optimization with variable step in a noise situation, Engng. Cybern. 10, 590–599Google Scholar
  195. Daniel, J. W. (1967a), The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4, 10–26Google Scholar
  196. Daniel, J. W. (1967b), Convergence of the conjugate gradient method with computationally convenient modifications, Numer. Math. 10, 125–131Google Scholar
  197. Daniel, J. W. (1969), On the approximate minimization of functionals, Math. Comp. 23, 573–581Google Scholar
  198. Daniel, J. W. (1970), A correction concerning the convergence rate for the conjugate gradient method, SIAM J. Numer. Anal. 7, 277–280Google Scholar
  199. Daniel, J. W. (1971), The approximate minimization of functionals, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  200. Daniel, J. W. (1973), Global convergence for Newton methods in mathematical programming, JOTA 12, 233–241Google Scholar
  201. Dantzig, G. B. (1966), Lineare Programmierung und Erweiterungen, Springer, BerlinGoogle Scholar
  202. Darwin, C. (1859), Die Entstehung der Arten durch natürliche Zuchtwahl, Ober-setzung von ‘The origin of species by means of natural selection’, Reclam, Stuttgart, 1974Google Scholar
  203. Darwin, C. (1874), Die Abstammung des Menschen, Obersetzung der 2. rev. Auflg. von ‘The descent of man’, Kräner, Stuttgart, 1966Google Scholar
  204. Davidon, W. C. (1959), Variable metric method for minimization, Argonne Nat. Lab., report ANL-5990 rev., Lemont, Ill., Nov. 1959Google Scholar
  205. Davidon, W. C. (1968), Variance algorithm for minimization, Comp. J. 10, 406–410Google Scholar
  206. Davidon, W. C. (1969), Variance algorithm for minimization, in: Fletcher (1969a), S. 13–20Google Scholar
  207. Davies, D. (1968), The use of Davidon’s method in nonlinear programming, ICI Mgmt. Serv., report MSDH-68–110, Middlesborough, Yorks., Aug. 1968Google Scholar
  208. Davies, D. (1970), Some practical methods of optimization, in: Abadie (1970), S. 87–118Google Scholar
  209. Davies, D., W. H. Swann (1969), Review of constrained optimization, in: Fletcher (1969a), S. 187–202Google Scholar
  210. Davies, M., I. J. Whitting (1972), A modified form of Levenberg’s correction, in: Lootsma (1972a), S. 191–201Google Scholar
  211. Davies, O. L. (ed.) (1954), The design and analysis of industrial experiments, Oliver and Boyd, LondonGoogle Scholar
  212. Davis, R. H., P. D. Roberts (1968), Method of conjugate gradients applied to self-adaptive digital control systems, IEE Proc. 115, 562–571Google Scholar
  213. DeGraag, D. P. (1970), Parameter optimization techniques for hybrid computers, Proc. VIth Int. Analogue Comp. Meet., München, Aug. -Sept. 1970, S. 136–139Google Scholar
  214. Dejon, B., P. Henrici (eds.) (1969), Constructive aspects of the fundamental theorem of algebra, Wiley-Interscience, LondonGoogle Scholar
  215. Oekker, T. J. (1969), Finding a zero by means of successive linear interpolation, in: Dejon and Henrici (1969), S. 37–48Google Scholar
  216. Demyanov, V. F., A. M. Rubinov (1970), Approximate methods in optimization problems, Amer. Elsevier, New YorkGoogle Scholar
  217. Denn, M. M. (1969), Optimization by variational methods, McGraw-Hill, New YorkGoogle Scholar
  218. Dennis, J. E., jr. (1970), On the convergence of Newton-like methods, in: Rabinowitz (1970), S. 163–181Google Scholar
  219. Dennis, J. E., jr. (1971), On the convergence of Broyden’s method for nonlinear systems of equations, Math. Comp. 25, 559–567Google Scholar
  220. Dennis, J. E., jr. (1972), On some methods based on Broyden’s secant approximation to the Hessian, in: Lootsma (1972a), S. 19–34Google Scholar
  221. D’Esopo, O. A. (1956), A convex programming procedure, Nay. Res. Log. quart. 6, 33–42Google Scholar
  222. DeVogelaere, R. (1968), Remark on algorithm 178(E4): direct search, CACM 11, 498Google Scholar
  223. Dickert, B. F., G. Enyedy, jr., C. E. Huckaba et al. (eds.) (1962), Applied mathe-matics in chemical engineering, AIChE Chem. Engng. Progr. Symp. Ser. 58, no. 37Google Scholar
  224. Dickinson, A. W. (1964), Nonlinear optimization: some procedures and examples, Proc. XIXth ACM Nat. Conf., Philadelphia, Penns., Aug. 1964, paper E1. 2Google Scholar
  225. Dijkhuis, B. (1971), An adaptive algorithm for minimizing a unimodal function of one variable, ZAMM 51, 745 - T46Google Scholar
  226. Dinkelbach, W. (1969), Sensitivitätsanalysen and parametrische Programmierung, Springer, BerlinGoogle Scholar
  227. Dixon, L. C. W. (1972a), Nonlinear optimization, Engl. Univ. Press, LondonGoogle Scholar
  228. Dixon, L. C. W. (1972b), The choice of step length, a crucial factor in the performance of variable metric algorithms, in: Lootsma (1972a), S. 149–170Google Scholar
  229. Dixon, L. C. W. (1972c), Variable metric algorithms: necessary and sufficient conditions for identical behavior of nonquadratic functions, JOTA 10, 34–40Google Scholar
  230. Dixon, L. C. W. (1973), Conjugate directions without linear searches, JOTA 11, 317–328Google Scholar
  231. Dixon, L. C. W., M. C. Biggs (1972), The advantages of adjoint-control transformations when determining optimal trajectories by Pontryagin’s Maximum Principle, Aeronautical J. 76, 169–174Google Scholar
  232. Oobzhansky, T. (1965), Dynamik der menschlichen Evolution: Gene and Umwelt, S. Fischer, Frankfurt/MainGoogle Scholar
  233. Dowall, M., P. Jarratt (1972), The Pegasus method for computing the root of an equation, BIT 12, 503–508Google Scholar
  234. Orenick, R. F. (1967), Die Optimierung linearer Regelsysteme, Oldenbourg, MOnchenGoogle Scholar
  235. Duffin, R. J., E. L. Peterson, C. Zener (1967), Geometric programming: theory and application, Wiley, New YorkGoogle Scholar
  236. Ovoretzky, A. (1956), On stochastic approximation, in: Neyman (1956), S. 39–56Google Scholar
  237. Edelbaum, T. N. (1962), Theory of maxima and minima, in: Leitmarin (1962), S. 1–32Google Scholar
  238. Eigen, M. (1971), Selforganization of matter and the evolution of biological macromolecules, Naturwiss. 58, 465–523Google Scholar
  239. Eisenberg, M. A., M. R. McGuire (1972), Further comments on Dijkstra’s concurrent programming control problem, CACM 15, 999Google Scholar
  240. Eisenhart, C., M. W. Hastay, W. A. Wallis (eds.) (1947), Selected techniques of statistical analysis for scientific and industrial research and production and management engineering, McGraw-Hill, New YorkGoogle Scholar
  241. Elkin, R. M. (1968), Convergence theories for Gauss-Seidel and other minimization algorithms, Univ. Maryland, Comp. Sci. Cntr., techn. report 68–59, College Park, Maryland, Jan. 1968Google Scholar
  242. Elliott, D. F., D. D. Sworder (1969a), A variable metric technique for parameter optimization, Automatica 5, 811–816Google Scholar
  243. Elliott, D. F., O. D. Sworder (1969b), Design of suboptimal adaptive regulator systems via stochastic approximation, Proc. Nat. Electron. Conf., Chicago, Ill., Dez. 1969, S. 29–33Google Scholar
  244. Elliott, D. F., D. D. Sworder (1970), Applications of a simplified multidimensional stochastic approximation algorithm, IEEE Trans. AC-15, 101–104Google Scholar
  245. Emery, F. E., M. O’Hagan (1966), Optimal design of matching networks for microwave transistor amplifiers, IEEE Trans. MTT-14, 696–698Google Scholar
  246. Engelhardt, M. (1973), On upper bounds for variances in stochastic approximation, SIAM J. Appl. Math. 24, 145–151Google Scholar
  247. Engeli, M., T. Ginsburg, H. Rutishauser, E. Stiefel (1959), Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems, Mitt. Inst. Angew. Math. ETH Zürich, Birkhäuser, BaselGoogle Scholar
  248. Erlicki, M. S., J. Appelbaum (1970), Solution of practical optimization problems, IEEE Trans. SSC-6, 49–52Google Scholar
  249. Ermoliev, Yu. (1970), Random optimization and stochastic programming, in: Moiseev ( 1970 ), 5. 104–115Google Scholar
  250. Faber, M. M. (1970), Stochastisches Programmieren, Physica, WürzburgGoogle Scholar
  251. Fabian, V. (1967), Stochastic approximation of minima with improved asymptotic speed, Ann. Math. Stat. 38, 191–200Google Scholar
  252. Fabian, V. (1968), On the choice of design in stochastic approximation methods, Ann. Math. Stat. 39, 457–465Google Scholar
  253. Faddejew, O. K., W. N. Faddejewa (1973), Numerische Methoden der linearen Algebra, Oldenbourg, München, 3. Auflg.Google Scholar
  254. Favreau, R. F., R. Franks (1958), Random optimization by analogue techniques, Proc. Ilnd Analogue Comp. Meet., Straßburg, Sept. 1958, 5. 437–443Google Scholar
  255. Feigenbaum, E. A., J. Feldman (eds.) (1963), Computers and thought, McGraw-Hill, New YorkGoogle Scholar
  256. Feldbaum, A. A. (1958), Automatic optimalizer, ARC 19, 718–728Google Scholar
  257. Feldbaum, A. A. (1960), Statistical theory of gradient systems of automatic optimization for objects with quadratic characteristics, ARC 21, 111–118Google Scholar
  258. Feldbaum, A. A. (1962), Rechengeräte in automatischen Systemen, Oldenbourg, MOnchenGoogle Scholar
  259. Fend. F. A., C. B. Chandler (1961), Numerical optimization for multidimensional problems, Gen. Electr., Gen. Engng. Lab., report 61-GL-78, März 1961Google Scholar
  260. Fiacco, A. V. (1974), Convergence properties of local solutions of sequences of mathematical programming problems in general spaces, JOTA 13, 1–12Google Scholar
  261. Fiacco, A. V., G. P. McCormick (1964), The sequential unconstrained minimization technique for nonlinear programming: a primal-dual method, Mgmt. Sci. 10, 360–366Google Scholar
  262. Fiacco, A. V., G. P. McCormick (1968), Nonlinear programming: sequential unconstrained minimization techniques, Wiley, New YorkGoogle Scholar
  263. Fielding, K. (1970), Algorithm 387(E4): function minimization and linear search. CACM 13, 509–510Google Scholar
  264. Fisher, R. A. (1966), The design of experiments, Oliver and Boyd, Edinburgh, 8. Auflg.Google Scholar
  265. Fletcher, R. (1965), Function minimization without evaluating derivatives: a review, Comp. J. 8, 33–41Google Scholar
  266. Fletcher, R. (1966), Certification of algorithm 251(E4): function minimization, CACM 9, 686–687Google Scholar
  267. Fletcher, R. (1968), Generalized inverse methods for the best least squares solution of systems of nonlinear equations, Comp. J. 10, 392–399Google Scholar
  268. Fletcher, R. (ed.) (1969a), Optimization, Academic Press, LondonGoogle Scholar
  269. Fletcher, R. (1969b), A review of methods for unconstrained optimization, in: Fletcher (1969a), S. 1–12Google Scholar
  270. Fletcher, R. (1970a), A class of methods for nonlinear programming with termination and convergence properties, in: Abadie ( 1970 ), 5. 157–176Google Scholar
  271. Fletcher, R. (1970b), A new approach to variable metric algorithms, Comp. J. 13, 317–322Google Scholar
  272. Fletcher, R. (1971), A modified Marquardt subroutine for non-linear least squares, UKAEA, Res. Group, report AERE-R-6799, Harwell, Berks.Google Scholar
  273. Fletcher, R. (1972a), Conjugate direction methods, in: Murray (1972a), S. 73–86Google Scholar
  274. Fletcher, R. (1972b), A survey of algorithms for unconstrained optimization, in: Murray (1972a), S. 123–129Google Scholar
  275. Fletcher, R. (1972c), A Fortran subroutine for minimization by the method of conjugate gradients, UKAEA, Res. Group, report AERE-R-7073, Harwell, Berks.Google Scholar
  276. Fletcher, R. (1972d), Fortran subroutines for minimization by quasi-Newton methods, UKAEA, Res. Group, report AERE-R-7125, Harwell, Berks.Google Scholar
  277. Fletcher, R., M. J. D. Powell (1963), A rapidly convergent descent method for minimization, Comp. J. 6, 163–168Google Scholar
  278. Fletcher, R., C. M. Reeves (1964), Function minimization by conjugate gradients, Comp. J. 7, 149–154Google Scholar
  279. Flood, M. M., A. Leon (1964), A generalized direct search code for optimization, Univ. Michigan, Mental Health Res. Inst., preprint 129, Ann Arbor, Mich., Juni 1964Google Scholar
  280. Flood, M. M., A. Leon (1966), A universal adaptive code for optimization: GROPE, in: Lavi and Vogl (1966), 5. 101–130Google Scholar
  281. Fogarty, L. E., R. M. Howe (1968), Trajectory optimization by a direct descent process, Simulation 11, 145–155Google Scholar
  282. Fogarty, L. E., R. M. Howe (1970), Hybrid computer solution of some optimization problems, Proc. VIth Int. Analogue Comp. Meet., München, Aug. -Sept. 1970, 5. 131–155Google Scholar
  283. Fogel, L. J., A. J. Owens, M. J. Walsh (1965), Artificial intelligence through a simulation of evolution, in: Maxfield, Callahan u. Fogel (1965), S. 131–155Google Scholar
  284. Fogel, L. J., A. J. Owens, M. J. Walsh (1966a), Adaption of evolutionary programming to the prediction of solar flares, Gen. Dyn. -Convair, report NASACR-417, San Diego, Calif.Google Scholar
  285. Fogel, L. J., A. J. Owens, M. J. Walsh (1966b), Artificial intelligence through simulated evolution, Wiley, New YorkGoogle Scholar
  286. Forsythe, G. E. (1968), On the asymptotic directions of the s-dimensional optimum gradient method, Numer. Math. 11, 57–76Google Scholar
  287. Forsythe, G. E. (1969), Remarks on the paper by Dekker, in: Dejon and Henrici, S. 49–51Google Scholar
  288. Forsythe, G. E., T. S. Motzkin (1951), Acceleration of the optimum gradient method, Buil. Amer. Math. Soc. 57, 304–305Google Scholar
  289. Fox, R. L. (1971), Optimization methods for engineering design, Addison-Wesley, Reading, Mass.Google Scholar
  290. Frankovi, B., t. Peträg, J. Skäkala, B. Vykouk (1970), Automatisierung and selbsttätige Steuerung, Vig. Technik, BerlinGoogle Scholar
  291. Friedberg, R. M. (1958), A learning machine I, IBM J. Res. Dev. 2, 2–13Google Scholar
  292. Friedberg, R. M., B. Ounham, J. H. North (1959), A learning machine II, IBM J. Res. Elev. 3, 282–287Google Scholar
  293. Friedmann, M., L. J. Savage (1947), Planning experiments seeking maxima, in: Eisenhart, Hastay und Wallis (1947), S. 365–372Google Scholar
  294. Friedrichs, K. O., O. E. Neugebauer, J. J. Stoker (eds.) (1948), Studies and essays, Courant anniversary volume, Interscience, New YorkGoogle Scholar
  295. Fu, K. S., L. D. Cockrell (1970), On search techniques for multimodal surfaces, IFAC Kyoto Symp. Syst. Engng. Appr. Comp. Contr., Aug. 1970, paper 17. 3Google Scholar
  296. Fu, K. S., L. J. Nikoli (1966), On some reinforcement techniques and their relation to the stochastic approximation, IEEE Trans. AC-11, 756–758Google Scholar
  297. Fürst, H., P. H. Müaler, V. Nollau (1968), Eine stochastische Methode zur Ermittlung der Maximalstelle einer Funktion von mehreren Veränderlichen mit experimentell ermittelbaren Funktionswerten und ihre Anwendung bei chemischen Prozessen, Chem. Techn. 20, 400–405Google Scholar
  298. Gaidukov, A. L. (1966), Primeneniye sluchainovo poiska pri optimalnom proyek-tirovanii, Prikladnye zadichi tekhnicheskoi kibernetiki (1966), 420–436Google Scholar
  299. Gal, S. (1971), Sequential minimax search for a maximum when prior information is available, SIAM J. Appl. Math. 21, 590–595Google Scholar
  300. Gal, S. (1972), Multidimensional minimax search for a maximum, SIAM J. Appl. Math. 23, 513–526Google Scholar
  301. Garfinkel, R. S., G. L. Nemhauser (1972), Integer programming, Wiley, New YorkGoogle Scholar
  302. Garfinkel, R. S., G. L. Nemhauser (1973), A survey of integer programming emphasizing computation and relations among models, in: Hu und Robinson ( 1973 ), S. 77–155Google Scholar
  303. Gau0, C. F. (1809), Determinatio orbitae observationibus quotcumque quam proxime satisfacientis, Werke, Band 7 (Theoria motus corporum coelestium in sectionibus conicis solem ambientium), Liber secundus, Sectio III, S. 236–257, Hamburgi sumtibus Frid. Perthes et I. H. Besser, 1809; Teubner, Leipzig, 1906Google Scholar
  304. Gaviano, M., E. Fagiuoli (1972), Remarks on the comparison between random search methods and the gradient method, in: Szegö ( 1972 ), S. 337–349Google Scholar
  305. Gelfand, I. M., M. L. Tsetlin (1961), The principle of nonlocal search in automatic optimization systems, Soviet Phys. Dokl. 6, 3, 192–194Google Scholar
  306. Geoffrion, A. M. (ed.) (1972), Perspectives on optimization, Addison-Wesley, Reading, Mass.Google Scholar
  307. Gérardin, L. (1968), Natur als Vorbild: die Entdeckung der Bionik, Kindler, MünchenGoogle Scholar
  308. Gersht, A. M., A. I. Kaplinskii (1971), Convergence of the continuous variant of the Robbins-Monro procedure, ARC 32, 71–75Google Scholar
  309. Gessner, P., K. Spremann (1972), Optimierung in Funktionenräumen, Springer, BerlinGoogle Scholar
  310. Gessner, P., H. Wacker (1972), Dynamische Optimierung: Einführung, Modelle, Computerprogramme, Hanser, MünchenGoogle Scholar
  311. Gilbert, E. G. (1967), A selected bibliography on parameter optimization methods suitable for hybrid computation, Simulation 8, 350–352Google Scholar
  312. Gilbert, P., W. J. Chandler (1972), Interface between communicating parallel processes, CACM 15, 427–437Google Scholar
  313. Gill, P. E., W. Murray (1972), Quasi-Newton methods for unconstrained optimization, JIMA 9, 91–108Google Scholar
  314. Ginsburg, T. (1963), The conjugate gradient method, Numer. Math. 5, 191–200Google Scholar
  315. Girsanov, I. V. (1972), Lectures on mathematical theory of extremum problems, Springer, BerlinGoogle Scholar
  316. Glass, H., L. Cooper (1965), Sequential search: a method for solving constrained optimization problems, JACM 12, 71–82Google Scholar
  317. Gnedenko, B. W. (1970), Lehrbuch der Wahrscheinlichkeitsrechnung, Akademie Vlg., Berlin, 6. Auflg.Google Scholar
  318. Goldfarb, D. (1969), Sufficient conditions for the convergence of a variable metric algorithm, in: Fletcher (1969a), S. 273–282Google Scholar
  319. Goldfarb, D. (1970), A family of variable-metric methods derived by variational means, Math. Comp. 24, 23–26Google Scholar
  320. Goldfeld, S. M., R. E. quandt, H. F. Trotter (1966), Maximization by quadratic hill-climbing, Econometrica 34, 541–551Google Scholar
  321. Goldfeld, S. M., R. E. Quandt, H. F. Trotter (1968), Maximization by improved quadratic hill-climbing, Princeton Univ., Econ. Res. Progr., res. memo. RM-95, Princeton, N. J., April 1968Google Scholar
  322. Goldstein, A. A. (1962), Cauchy’s method of minimization, Numer. Math. 4, 146–150Google Scholar
  323. Goldstein, A. A. (1965), On Newton’s method, Numer. Math. 7, 391–393Google Scholar
  324. Goldstein, A. A., J. F. Price (1967), An effective algorithm for minimization, Numer. Math. 10, 184–189Google Scholar
  325. Goldstein, A. A., J. F. Price (1971), On descent from local minima, Math. Comp. 25, 569–574Google Scholar
  326. Golinski, J., Z. K. Lesnick (1966), Optimales Entwerfen von Konstruktionen mit Hilfe der Monte-Carlo-Methode, Bautechnik 43, 307–311Google Scholar
  327. Goll, R. (1972), Der Evolutionismus: Analyse eines Grundbegriffs neuzeitlichen Denkens, Beck, MünchenGoogle Scholar
  328. Golub, G. H. (1965), Numerical methods for solving linear least squares problems, Numer. Math. 7, 206–216Google Scholar
  329. Golub, G. H., M. A. Saunders (1970), Linear least squares and quadratic programming, in: Abadie (1970), S. 229–256Google Scholar
  330. Gonzalez, R. S. (1970), An optimization study on a hybrid computer, Ann. Assoc. Int. Calcul Analog. 12, 138–148Google Scholar
  331. Gorvits, G. G., O. I. Larichev (1971), Comparison of search methods for the solution of nonlinear identification problems, ARC 32, 272–280Google Scholar
  332. Gottfried, B. S., J. Weisman (1973), Introduction to optimization theory, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  333. Gran, R. (1973), On the convergence of random search algorithms in continuous time with applications to adaptive control, IEEE Trans. SMC-3, 62–66Google Scholar
  334. Grassé, P. P. (1973), Allgemeine Biologie, Band 5: Evolution, G. Fischer, StuttgartGoogle Scholar
  335. Grassmann, P. (1967), Verfahrenstechnik und Biologie, Chem. Ing. Techn. 39, 1217–1226Google Scholar
  336. Grassmann, P. (1968), Verfahrenstechnik und Medizin, Chem. Ing. Techn. 40, 1094–1100Google Scholar
  337. Graves, R. L., P. Wolfe (eds.) (1963), Recent advances in mathematical programming, McGraw-Hill, New YorkGoogle Scholar
  338. Greenberg, H. (1971), Integer programming, Academic Press, New YorkGoogle Scholar
  339. Greenstadt, J. (1967a), On the relative efficiencies of gradient methods, Math. Comp. 21, 360–367Google Scholar
  340. Greenstadt, J. (1967b), Bestimmung der Eigenwerte einer Matrix nach der Jacobi-Methode, in: Ralston und Wilf (1967), S. 152–168Google Scholar
  341. Greenstadt, J. (1970), Variations on variable-metric methods, Math. Comp. 24, 1–22Google Scholar
  342. Greenstadt, J. (1972), A quasi-Newton method with no derivatives, Math. Comp. 26, 145–166Google Scholar
  343. Gr0sser, O. J., R. Klinke (Hrsg.) (1971), Zeichenerkennung durch biologische und technische Systeme, Springer, BerlinGoogle Scholar
  344. Guilfoyle, G., I. Johnson, P. Wheatley (1967), One-dimensional search combining golden section and cubic fit techniques, Anal. Mech. Assoc. Inc., quart. report 67–1, Westbury, Long Island, N. Y., Jan. 1967Google Scholar
  345. Guin, J. A. (1968), Modification of the Complex method of constrained optimization, Comp. J. 10, 416–417Google Scholar
  346. Gurin, L. S. (1966), Random search in the presence of noise, Engng. Cybern. 4, 3, 252–260Google Scholar
  347. Gurin, L. S., V. P. Lobac (1963), Combination of the Monte Carlo method with the method of steepest descents for the solution of certain extremal problems, AIAA J. 1, 2708–2710Google Scholar
  348. Gurin, L. S., L. A. Rastrigin (1965), Convergence of the random search method in the presence of noise, ARC 26, 1505–1511Google Scholar
  349. Hadamard, J. (1908), Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, Mém. prés. Acad. Sci. Inst. France, 2. Serie, Band 33 (savants étragers), no. 4, S. 1–128Google Scholar
  350. Hadley, G. (1962), Linear programming, Addison-Wesley, Reading, Mass.Google Scholar
  351. Hadley, G. (1969), Nichtlineare und dynamische Programmierung, Physics, Würzburg Hague, D. S., C. R. Glatt (1968), An introduction to multivariable search techniques for parameter optimization and program AESOP, Boeing, Space Div., report NASA-CR-73200, Seattle, Wash., März 1968Google Scholar
  352. Hamilton, P. A., J. Boothroyd (1969), Remark on algorithm 251(E4): function minimization, CACM 12, 512–513Google Scholar
  353. Hamnersley, J. M., D. C. Handscomb (1964), Monte Carlo methods, Methuen, LondonGoogle Scholar
  354. Hancock, H. (1960), Theory of maxima and minima, Dover Publ., New YorkGoogle Scholar
  355. Hansen, P. B. (1972), Structured multiprogramming, CACM 15, 574–578Google Scholar
  356. Harkins. A. (1964), The use of parallel tangents in optimization, in: Blakemore und Davis ( 1964 ), S. 35–40Google Scholar
  357. Hartmann, D. (1974), Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit elastischem und plastischem Werkstoffverhalten, Dr. -Ing. Diss., Univ. Dortmund, Juli 1974Google Scholar
  358. Haubrich, J. G. A. (1963), Algorithm 205(E4): ative, CACM 6, 519Google Scholar
  359. Heinhold, J., K. W. Gaede (1972), Ingenieur-Statistik, Oldenbourg, München, 3. Auflg.Google Scholar
  360. Henn, R., H. P. Künzi (1968), Einführung in die Unternehmensforschung I und I I, Springer, BerlinGoogle Scholar
  361. Herschel, R. (1961), Automatische Optimisatoren, Elektron. Rechenanlg. 3, 30–36Google Scholar
  362. Hertel, H. (1963), Biologie und Technik, Band 1: Struktur, Form, Bewegung, Krausskopf, MainzGoogle Scholar
  363. Hesse, R. (1973), A heuristic search procedure for estimating a global solution of nonconvex programming problems, Oper. Res. 21, 1267–1280Google Scholar
  364. Hestenes, M. R. (1956), The conjugate-gradient method for solving linear systems, Proc. Symp. Appl. Math. 6, 83–102Google Scholar
  365. Hestenes, M. R. (1966), Calculus of variations and optimal control theory, Wiley, New YorkGoogle Scholar
  366. Hestenes, M. R. (1969), Multiplier and gradient methods, in: Zadeh, Neustadt und Balakrishnan (1969a), S. 143–163Google Scholar
  367. Hestenes, M. R. (1973), Iterative methods for solving linear equations, JOTA 11, 323–334Google Scholar
  368. Hestenes, M. R., M. L. Stein (1973), The solution of linear equations by minimization, JOTA 11, 335–359Google Scholar
  369. Hestenes, M. R., E. Stiefel (1952), Methods of conjugate gradients for solving linear systems, NBS, J. Res. 49, 409–436Google Scholar
  370. Heydt, G. T. (1970), Directed random search, Ph. D. thesis, Purdue Univ., Lafayette, Ind., Aug. 1970Google Scholar
  371. Heynert, H. (1972), Einführung in die allgemeine Bionik, Dt. V1g. Wissensch., BerlinGoogle Scholar
  372. Hildebrand, F. B. (1956), Introduction to numerical analysis, McGraw-Hill, New YorkGoogle Scholar
  373. Hill, J. C. (1964), A hillclimbing technique using piecewise cubic approximation, Ph. D. thesis, Purdue Univ., Lafayette, Ind., Juni 1964Google Scholar
  374. Hill, J. C., J. E. Gibson (1965), Hillclimbing on hills with many minima, Proc. Ilnd IFAC Symp. Theory Self Adapt. Contr. Syst., Teddington, Engl., Sept. 1965, 5. 322–334Google Scholar
  375. Hill, J. D. (1969), A search technique for multimodal surfaces, IEEE Trans. SSC-5, 2–8Google Scholar
  376. Hill, J. D., K. S. Fu (1965), A learning control system using stochastic approximation for hill-climbing, VIth Joint Autom. Contr. Conf., Troy, N. Y., Juni 1965, session 14, paper 2Google Scholar
  377. Hill, J. D., G. J. McMurtry, K. S. Fu (1964), A computer simulated on-line experiment in learning control systems, AFIPS Conf. Proc. 25, 315–325Google Scholar
  378. Himmelblau, D. M. (1972a), A uniform evaluation of unconstrained optimization techniques, in: Lootsma (1972b), S. 69–97Google Scholar
  379. Himmelblau, D. M. (1972b), Applied nonlinear programming, McGraw-Hill, New YorkGoogle Scholar
  380. Himsworth, F. R. (1962), Empirical methods of optimization, Trans. Inst. Chem. Engrs. 40, 345–349Google Scholar
  381. Höfler, A., U. Leyßner, J. Wiedemann (1973), Optimization of the layout of trusses combining strategies based on Michell’s theorem and on the biological principles of evolution, AGARD Conf. Proc. 123, IInd Symp. Struct. Optim., Mailand, April 1973, app. AGoogle Scholar
  382. Hoffmann, U., H. Hofmann (1970), Einführung in die Optimierung mit Anwendungsbeispielen aus dem Chemie-Ingenieur-Wesen, V1g. Chemie, WeinheimGoogle Scholar
  383. Hooke, R. (1957), Control by automatic experimentation, Chem. Engng. 64, 6, 284–286Google Scholar
  384. Hooke, R., T. A. Jeeves (1958), Comments on Brooks’ discussion of random methods, Oper. Res. 6, 881–882Google Scholar
  385. Hooke, R., T. A. Jeeves (1961), Direct search solution of numerical and statistical problems, JACM 8, 212–229Google Scholar
  386. Hooke, R., R. I. VanNice (1959), Optimizing control by automatic experimentation, ISA J. 67, 74–79Google Scholar
  387. Hopper, M. J. (ed.) (1971), Harwell subroutine library: a catalogue of subroutines, UKAEA, Res. Group, report AERE-R-6912, Harwell, Berks.Google Scholar
  388. Horwitz, L. B., P. E. Sarachik (1968), Davidon’s method in Hilbert space, SIAM J. Appl. Math. 16, 676–695Google Scholar
  389. Hoshino, S. (1971), On Davies, Swann and Campey minimisation process, Comp. J. 14, 426–427Google Scholar
  390. Hoshino, S. (1972), A formulation of variable metric methods, JIMA 10, 394–403Google Scholar
  391. Hotelling, H. (1941), Experimental determination of the maximum of a function, Ann. Math. Stat. 12, 20–45Google Scholar
  392. House, F. R. ( 1971 ], Remark on algorithm 251(E4): function minimization, CACM 14, 358Google Scholar
  393. Householder, A. S. (1953), Principles of numerical analysis, McGraw-Hill, New YorkGoogle Scholar
  394. Householder, A. S. (1970), The numerical treatment of a single nonlinear equation, McGraw-Hill, New YorkGoogle Scholar
  395. Houston, B. F., R. A. Huffman (1971), A technique which combines modified pattern search methods with composite designs and polynomial constraints to solve constrained optimization problems, Nay. Res. Log. Quart. 18, 91–98Google Scholar
  396. Hu, T. C. (1972), Ganzzahlige Programmierung and Netzwerkflosse, Oldenbourg, MunchenGoogle Scholar
  397. Hu, T. C., S. M. Robinson (eds.) (1973), Mathematical programming, Academic Press, New YorkGoogle Scholar
  398. Huang, H. Y. (1970), Unified approach to quadratically convergent algorithms for function minimization, JOTA 5, 405–423Google Scholar
  399. Huang, H. Y. (1974), Method of dual matrices for function minimization, JOTA 13, 519–537Google Scholar
  400. Huang, H. Y., J. P. Chambliss (1973), Quadratically convergent algorithms and one-dimensional search schemes, JOTA 11, 175–188Google Scholar
  401. Huang, H. Y., J. P. Chambliss (1974), Numerical experiments on dual matrix algorithms for function minimization, JOTA 13, 620–634Google Scholar
  402. Huang, H. Y., A. V. Levy (1970), Numerical experiments on quadratically convergent algorithms for function minimization, JOTA 6, 269–282Google Scholar
  403. Huelsman, L. P. (1968), GOSPEL: a general optimization software package for electrical network design, Univ. Arizona, Dept. Electr. Engng., report, Tucson, Arizona, Sept. 1968Google Scholar
  404. Hull, T. E. (1967), Random-number generation and Monte-Carlo methods, in: Klerer and Korn (1967), S. 63–78Google Scholar
  405. Humphrey, W. E., S. J. Cottrell (1962), A general minimizing routine, Univ. California. Lawrence Rad. Lab. int. memo. P-6, Livermore, Calif., Juli 1962, rev. März 1966Google Scholar
  406. Hupfer, P. (1970), Optimierung von Baukonstruktionen, Teubner, StuttgartGoogle Scholar
  407. Hyslop. J. (1972), A note on the accuracy of optimisation techniques, Comp. J. 15, 140Google Scholar
  408. Idelsohn, J. M. (1964), Ten ways to find the optimum, Contr. Engng. 11, 6, 97–102Google Scholar
  409. Imamura, H., K. Uosaki, M. Tasaka, T. Suzuki (1970), Optimization methods in the multimodal case and their application to automatic lens design, IFAC Kyoto Symp. Syst. Engng. Appr. Comp. Contr., Aug. 1970, paper 7. 4Google Scholar
  410. Inomata, S., M. Kumada (1961), On the golf method, Denkt shikensho iho Bull. Electrotechn. Lab., Tokyo, 25, 495–512Google Scholar
  411. Ivakhnenko, A. G. (1970), Heuristic self-organization in problems of engineering cybernetics, Automatics 6, 207–219Google Scholar
  412. Jacobson, O. H., D. Q. Mayne (1970), Differential dynamic programming, Amer. Elsevier, New YorkGoogle Scholar
  413. Jacoby, S. L. S., J. S. Kowalik, J. T. Pizzo (1972), Iterative methods for nonlinear optimization problems, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  414. Jahnke-Emde-Lösch (1966), Tafeln höherer Funktionen, Teubner, Stuttgart, 7. Auflg.Google Scholar
  415. Janh, K. (1971), Adaptive stochastic approximations, Simulation 16, 51–58Google Scholar
  416. Jarratt, P. (1967), An iterative method for locating turning points, Comp. J. 10, 82–84Google Scholar
  417. Jarratt, P. (1968), A numerical method for determining points of inflexion. BIT 8, 31–35Google Scholar
  418. Jarratt, P. (1970), A review of methods for solving nonlinear algebraic equations in one variable, in: Rabinowitz (1970), S. 1–26Google Scholar
  419. Jarvis, R. A. (1968), Hybrid computer simulation of adaptive strategies, Ph. D. thesis, Univ. Western Australia, März 1968Google Scholar
  420. Jarvis, R. A. (1970), Adaptive global search in a time-variant environment using a probabilistic automaton with pattern recognition supervision, IEEE Trans. SSC-6, 209–217Google Scholar
  421. Jeeves, T. A. (1958), Secant modification of Newton’s method, CACM 1, 9–10Google Scholar
  422. Jöhnk, M. D. (1969), Erzeugen und Testen von Zufallszahlen, Physica, WOrzburgGoogle Scholar
  423. Johannsen, G. (1970), Entwicklung und Optimierung eines vielparametrigen nicht-linearen Modells für den Menschen als Regler in der Fahrzeugführung, Dr. -Ing. Diss., Techn. Univ. Berlin, Okt. 1970Google Scholar
  424. Johannsen, G. (1973), Optimierung vielparametriger Bezugsmodelle mit Hilfe von Zufallssuchverfahren, Regelungstechn. ProzeB-Datenverarb. 21, 234–239Google Scholar
  425. John, F. (1948), Extremum problems with inequalities as subsidiary conditions, in: Friedrichs, Neugebauer und Stoker (1948), S. t87–204Google Scholar
  426. John, P. W. M. (1971), Statistical design and analysis of experiments, Macmillan, New YorkGoogle Scholar
  427. Johnson, S. M. (1956), Beat exploration for maximum is Fibonaccian, RAND Corp., report P-856, Santa Monica, Calif.Google Scholar
  428. Jones, A. (1970), Spiral: a new algorithm for nonlinear parameter estimation using least squares, Comp. J. 13, 301–308Google Scholar
  429. Jones, D. S. (1973), The variable metric algorithm for non-definite quadratic functions, JIMA 12, 63–71Google Scholar
  430. Jordan, P. (1970), Schöpfung and Geheimnis, Stalling, OldenburgGoogle Scholar
  431. Kamiya, A., T. Togawa (1972), Optimal branching structure of the vascular tree, Bull. Math. Biophys. 34, 431–438Google Scholar
  432. Kammerer, W. J., M. Z. Nashed (1972), On the convergence of the conjugate gradient method for singular linear operator equations, SIAM J. Numer. Anal. 9, 165–181Google Scholar
  433. Kantorovich, L. V. (1940), A new method of solving of some classes of extremal problems, Compt. Rend. Acad. Sci. URSS, Neue Serie 28, 211–214Google Scholar
  434. Kantorovich, L. V. (1945), On an effective method of solving extremal problems for quadratic functionals, Compt. Rend. Acad. Sci. URSS, Neue Serie 48, 455–460Google Scholar
  435. Kantorovich, L. V. (1952), Functional analysis and applied mathematics, NBS report 1509, März 1952Google Scholar
  436. Kaplinskii, A. I., A. I. Propoi (1970), Stochastic approach to nonlinear programming problems, ARC 31, 448–459Google Scholar
  437. Kappler, H. (1967), Gradientenverfahren der nichtlinearen Programmierung, O. Schwartz, GöttingenGoogle Scholar
  438. Karnopp, D. C. (1961), Search theory applied to parameter scan optimization problems, Ph. O. thesis, MIT, Cambridge, Mass., Juni 1961Google Scholar
  439. Karnopp, D. C. (1963), Random search techniques for optimization problems, Automatica 1, 111–121Google Scholar
  440. Karnopp, D. C. (1966), Ein direktes Rechenverfahren für implizite Variationsprobleme bei optimalen Prozessen, Regelungstechn. 14, 366–368Google Scholar
  441. Karp, R. M., W. L. Miranker (1968), Parallel minimax search for a maximum, J. Comb. Theory 4, 19–35Google Scholar
  442. Karreman, H. F. (ed.) (1968), Stochastic optimization and control, Wiley: New YorkGoogle Scholar
  443. Karumidze, G. V. (1969), A method of random search for the solution of global extremum problems, Engng. Cybern. 7, 6, 27–31Google Scholar
  444. Katkovnik, V. Ya., O. Yu. Kulchitskii (1972), Convergence of a class of random search algorithms, ARC 33, 1321–1326Google Scholar
  445. Katkovnik, V. Ya., L. I. Shimelevich (1972), A class of heuristic methods for solution of partially-integer programming problems, Engng. Cybern. 10, 390–394Google Scholar
  446. Kaupe, A. F. (1963). Algorithm 178(E4): direct search, CACM 6, 313–314Google Scholar
  447. Kaupe, A. F. (1964), On optimal search techniques, CACM 7, 38Google Scholar
  448. Kavanaugh, W. P., E. C. Stewart, D. H. Brocker (1968), Optimal control of satellite attitude acquisition by a random search algorithm on a hybrid computer, AFIPS Conf. Proc. 32, 443–452Google Scholar
  449. Kawamura, K., R. A. Volz (1973), On the rate of convergence of the conjugate gradient reset method with inaccurate linear minimizations, IEEE Trans. AC-18, 360–366Google Scholar
  450. Kelley, H. J. (1962), Methods of gradients, in: Leitmann (1962), S. 205–254Google Scholar
  451. Kelley, H. J., G. E. Myers (1971), Conjugate direction methods for parameter optimization, Astron. Acta 16, 45–51Google Scholar
  452. Kelley, H. J., J. L. Speyer (1970), Accelerated gradient projection, in: Balakrishnan, Contensou, DeVeubeke et al. ( 1970 ), S. 151–158Google Scholar
  453. Kempthorne, O. (1952), The design and analysis of experiments, Wiley, New YorkGoogle Scholar
  454. Kenworthy, I. C. (1967), Some examples of simplex evolutionary operation in the paper industry, Appl. Stat. 16, 211–224Google Scholar
  455. Kesten, H. (1958), Accelerated stochastic approximation, Ann. Math. Stat. 29, 41–59Google Scholar
  456. Khovanov, N. V. (1967), Stochastic optimization of parameters by the method of variation of the search region, Engng. Cybern. 5, 4, 34–39Google Scholar
  457. Kiefer, J. (1953), Sequential minimax search for a maximum, Proc. Amer. Math. Soc. 4, 502–506Google Scholar
  458. Kiefer, J. (1957), Optimum sequential search and approximation methods under minimum regularity assumptions, SIAM J. 5, 105–136Google Scholar
  459. Kiefer, J., J. Wolfowitz (1952), Stochastic estimation of the maximum of a regression function, Ann. Math. Stet. 23, 462–466Google Scholar
  460. King, R. F. (1973), An improved Pegasus method for root finding, BIT 13, 423–427Google Scholar
  461. Kivelidi, V. Kh., Ya. I. Khurgin (1970), Construction of probabilistic search, ARC 31, 1892–1894Google Scholar
  462. Kjellström, G. (1965), Network optimization by random variation of component values, Ericsson Techn. 25, 133–151Google Scholar
  463. Klerer, M., G. A. Korn (eds.) (1967), Digital computer user’s handbook, McGraw-Hill, New YorkGoogle Scholar
  464. Klessig, R., E. Polak (1972), Efficient implementations of the Polak-Ribière conjugate gradient algorithm, SIAM J. Contr. 10, 524–549Google Scholar
  465. Klessig, R., E. Polak (1973), An adaptive precision gradient method for optimal control, SIAM J. Contr. 11, 80–93Google Scholar
  466. Klingman, W. R., D. M. Himmelblau (1964), Nonlinear programing with the aid of a multiple-gradient sumation technique, JACM 11, 400–415Google Scholar
  467. Klötzler, R. (1970), Mehrdimensionale Variationsrechnung, Birkhäuser, BaselGoogle Scholar
  468. Koch, H. W. (1973), Der Sozialdarwinismus: seine Genese and sein Einfluß auf das imperialistische Denken, Beck, MunchenGoogle Scholar
  469. Kopp, R. E. (1967), Computational algorithms in optimal control, IEEE Int. Conv. Record 15, part 3 (Automatic Control), 5–14Google Scholar
  470. Korbut, A. A., J. J. Finkelstein (1971), Diskrete Optimierung, Akademie V1g., BerlinGoogle Scholar
  471. Korn, G. A. (1966), Random process simulation and measurement, McGraw-Hill, New YorkGoogle Scholar
  472. Korn, G. A. (1968), Hybrid computer Monte Carlo techniques, in: McLeod (1968), 5. 223–234Google Scholar
  473. Korn, G. A., T. M. Korn (1961), Mathematical handbook for scientists and engineers, McGraw-Hill, New YorkGoogle Scholar
  474. Korn, G. A., T. M. Korn (1964), Electronic analog and hybrid computers, McGraw-Hill, New YorkGoogle Scholar
  475. Korn, G. A., H. Kosako (1970), A proposed hybrid-computer method for functional optimization, IEEE Trans. C-19, 149–153Google Scholar
  476. Kovhcs, Z., S. A. Lill (1971), Note on algorithm 46: a modified Davidon method for finding the minimum of a function, using difference approximation for derivatives, Comp. J. 14, 214–215Google Scholar
  477. Kowalik, J. (1967), A note on nonlinear regression analysis, Austral. Comp. J. 1, 51–53Google Scholar
  478. Kowalik, J., J. F. Morrison (1968), Analysis of kinetic data for allosteric enzyme reactions as a nonlinear regression problem, Math. Biosci. 2, 57–66Google Scholar
  479. Kowalik, J., M. R. Osborne (1968), Methods for unconstrained optimizationGoogle Scholar
  480. problems, Amer. Elsevier, New YorkGoogle Scholar
  481. Krasnushkin, E. V. (1970), Multichannel automatic optimizer having a variable sign for the feedback, ARC 31, 2057–2061Google Scholar
  482. Krasovskii, A. A. (1962), Optimal methods of search in continuous and pulsed extremum control systems, Proc. Ist IFAC Symp. Optim. Adapt. Contr., Rom, April 1962, S. 19–33Google Scholar
  483. Krasovskii, A. A. (1963), Problems of continuous systems theory of extremal control of industrial processes, Proc. IInd IFAC Congr., Basel, Aug. Sept. 1963, Band 1, S. 519–526Google Scholar
  484. Krasulina, T. P. (1972), Robbins-Monro process in the case of several roots, ARC 33, 580–585Google Scholar
  485. Kregting, J., R. C. White, jr. (1971), Adaptive random search, Eindhoven Univ. of Technology, Dept. Electr. Engng., Group Measurement and Control, report TH-71-E-24, Eindhoven, Niederl., Okt. 1971Google Scholar
  486. Krelle, W., H. P. Künzi (1958), Lineare Programmierung, V1g. Industr. Organ., ZürichGoogle Scholar
  487. Krolak, P. D. (1968), Further extensions of Fibonaccian search to nonlinear programming problems, SIAM J. Contr. 6, 258–265Google Scholar
  488. Krolak, P. O., L. Cooper (1963), An extension of Fibonaccian search to several variables, CACM 6, 639–641Google Scholar
  489. Künzi, H. P. (1967), Mathematische Optimierung großer Systeme, Ablauf-und Planungsforschung 8, 395–407Google Scholar
  490. Künzi, H. P., W. Krelle (1969), Einführung in die mathematische Optimierung, V1g. Industr. Organ., ZürichGoogle Scholar
  491. Künzi, H. P., W. Krelle, W. Oettli (1962), Nichtlineare Programmierung, Springer, BerlinGoogle Scholar
  492. Künzi, H. P., W. Oettli (1969), Nichtlineare Optimierung: neuere Verfahren - Bibliographie, Springer, BerlinGoogle Scholar
  493. Künzi, H. P., S. T. Tan (1966), Lineare Optimierung großer Systeme, Springer, BerlinGoogle Scholar
  494. Künzi, H. P., H. G. Tzschach, C. A. Zehnder (1966), Numerische Methoden der mathematischen Optimierung, Teubner, StuttgartGoogle Scholar
  495. Künzi, H. P., H. G. Tzschach, C. A. Zehnder (1970), Numerische Methoden der mathematischen Optimierung mit Algol-und Fortran-Programmen: Gebrauchsversion der Computerprogramme, Teubner, StuttgartGoogle Scholar
  496. Kuester, J. L., J. H. Mize (1973), Optimization techniques with Fortran, McGraw-Hill, New YorkGoogle Scholar
  497. Kuhn, H. W. (ed.) (1970), Proc. Princeton Symposium Math. Programm., Aug. 1967, Princeton Univ. Press, Princeton, N. J.Google Scholar
  498. Kuhn, H. W., A. W. Tucker (1951), Nonlinear programming, in: Neyman(1951), S. 481–492Google Scholar
  499. Kulchitskiy, O. Yu. (1972), A non-gradient random search method for an extremum in a Hilbert space, Engng. Cybern. 10, 773–780Google Scholar
  500. Kuo, F. F., J. F. Kaiser (eds.) (1966), System analysis by digital computer, Wiley, New YorkGoogle Scholar
  501. Kushner, H. J. (1963), Hill climbing methods for the optimization of multi-parameter noise disturbed systems, Trans. ASME D, J. Basic Engng. (1963), 157–164Google Scholar
  502. Kushner, H. J. (1972), Stochastic approximation algorithms for the local optimization of functions with nonunique stationary points, IEEE Trans. AC-17, 646–654Google Scholar
  503. Kussul, E., A. Luk (1971), Evolution als Optimierungsprozeß, Ideen des exakten Wissens (1971), 821–826Google Scholar
  504. Kwakernaak, H. (1965), On-line iterative optimization of stochastic control systems, Automatica 2, 195–208Google Scholar
  505. Kwakernaek, H. (1966), On-line dynamic optimization of stochastic control systems, Proc. Ilird IFAC Congr., London, Juni 1966, paper 29–0Google Scholar
  506. Kwatny, H. G. (1972), A note on stochastic approximation algorithms in system identification, IEEE Trans. AC-17, 571–572Google Scholar
  507. Land, A. H., S. Powell (1973), Fortran codes for mathematical programming: linear, quadratic and discrete, Wiley, LondonGoogle Scholar
  508. Lange-Nielsen, T., G. M. Lance (1972), A pattern search algorithm for feedback-control system parameter optimization, IEEE Trans. C-21, 1222–1227Google Scholar
  509. Langguth, V. (1972), Ein Identifikationsverfahren für lineare Systeme mit Hilfe von stochastischen Suchverfahren und unter Anwendung der Sequentialanalyse für stochastische Fehlersignale, messen-steuern-regeln 15, 293–296Google Scholar
  510. Lapidus, L., E. Shapiro, S. Shapiro, R. E. Stillman (1961), Optimization of process performance, AIChE J. 7, 2, 288–294Google Scholar
  511. Larichev, O. I., G. G. Gorvits (1974), New approach to comparison of search methods used in nonlinear programming problems, JOTA 13, 635–659Google Scholar
  512. Larson, R. E., E. Tse (1973), Parallel processing algorithms for the optimal control of nonlinear dynamic systems, IEEE Trans. C-22, 777–786Google Scholar
  513. Lasdon, L. S. (1970), Conjugate direction methods for optimal control, IEEE Trans. AC-15, 267–268Google Scholar
  514. Lavi, A., T. P. Vogl (eds.) (1966), Recent advances in optimization techniques, Wiley, New YorkGoogle Scholar
  515. Lawrence, J. P., III, F. P. Emad (1973), An analytic comparison of random searching and gradient searching of a known objective function, IEEE Trans. AC-18, 669–671Google Scholar
  516. Lawrence, J. P., III, K. Steiglitz (1972), Randomized pattern search, IEEE Trans. C-21, 382–385Google Scholar
  517. LeCam, L. M., J. Neyman (eds.) (1967), Proc. Vth Berkeley Symp. Math. Stat. Probab., 1965/66, Univ. Calif. Press, Berkeley, Calif.Google Scholar
  518. LeCam, L. M., J. Neyman, E. L. Scott (eds.) (1972), Proc. VIth Berkeley Symp. Math. Stat. Probab., 1970/71, Univ. Calif. Press, Berkeley, Calif.Google Scholar
  519. Lee, R. C. K. (1964), Optimal estimation, identification, and control, MIT Press, Cambridge, Mass.Google Scholar
  520. Leibniz, G. W. (1710), Theodicee, 4. verb. Auflg.: Förster, Hannover, 1744Google Scholar
  521. Leitmann, G. (ed.) (1962), Optimization techniques with applications to aerospace systems, Academic Press, New YorkGoogle Scholar
  522. Leitmann, G. (1964), Einführung in die Theorie optimaler Steuerung und derGoogle Scholar
  523. Differentialspiele: eine geometrische Darstellung, Oldenbourg, München Leitmann, G. (ed.) (1967), Topics in optimization, Academic Press, New YorkGoogle Scholar
  524. Leon, A. (1966a), A comparison among eight known optimizing procedures, in: Lavi und Vogl ( 1966 ), S. 23–46Google Scholar
  525. Leon, A. (1966b), A classified bibliography on optimization, in: Lavi und Vogl (1966), S. 599–649Google Scholar
  526. Lerner, A. Ja., E. A. Rosenman (1973), Optimale Steuerungen, Vlg. TechnikGoogle Scholar
  527. Berlin Leniak, Z. K. (1970), Methoden der Optimierung von Konstruktionen unter Benutzung von Rechenautomaten, W. Ernst, BerlinGoogle Scholar
  528. Levenberg, K. (1944), A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2, 164–168Google Scholar
  529. Levine, L. (1964), Methods for solving engineering problems using analog computers, McGraw-Hill, New YorkGoogle Scholar
  530. Levine, M. D., T. Vilis (1973), On-line learning optimal control using successive approximation techniques, IEEE Trans. AC-18, 279–284Google Scholar
  531. Lew, H. S. (1972), An arithmetical approach to the mechanics of blood flow in small caliber blood vessels, J1Biomech. 5, 49–69Google Scholar
  532. Leyßner, U. (1974), Ober den Einsatz Linearer Programmierung beim Entwurf opti-maler Leichtbaustabwerke, Dr. -Ing. Diss., Techn. Univ. Berlin, Juni 1974Google Scholar
  533. Lill, S. A. (1970), Algorithm 46: a modified Davidon method for finding the minimum of a function, using difference approximation for derivatives, Comp. J. 13, 111–113Google Scholar
  534. Lill, S. A. (1971), Note on algorithm 46: a modified Oavidon method, Comp. J. 14, 106Google Scholar
  535. Little, W. D. (1966), Hybrid computer solutions of partial differential equations by Monte Carlo methods, AFIPS Conf. Proc. 29, 181–190Google Scholar
  536. Ljapunov, A. A. (Red.), W. Kämmerer, H. Thiele (Hrsg.) (1964a), Probleme der Kybernetik, Band 4, Akademie Vlg., BerlinGoogle Scholar
  537. Ljapunov, A. A. (Red.), W. Kämmerer, H. Thiele (Hrsg.) (1964b), Probleme der Kybernetik, Band 5, Akademie Vlg., BerlinGoogle Scholar
  538. Locker. A. (ed.) (1973), Biogenesis, Evolution, Homeostasis, SpringerGoogle Scholar
  539. Berlin Loginov, N. V. (1966), Methods of stochastic approximation, ARC 27, 706–728Google Scholar
  540. Lootsma, F. A. (ed.) (1972a), Numerical methods for non-linear optimization, Academic Press, LondonGoogle Scholar
  541. Lootsma, F. A. (1972b), A survey of methods for solving constrained minimization problems via unconstrained minimization, in: Lootsma (1972a), S. 313–347Google Scholar
  542. Lowe, C. W. (1964), Some techniques of evolutionary operation, Trans. Inst. Chem. Engrs. 42, T334 - T344Google Scholar
  543. Lucas, E. (1876), Note sur l’application des series récurrentes à la recherche de la loi de distribution de nombres premiers, Compt. Rend. Hebdomad. Séances Acad. Sci. Paris, 82, 165–167Google Scholar
  544. Luenberger, D. G. (1972), Mathematical programming and control theory: trends of interplay, in: Geoffrion ( 1972 ), S. 102–133Google Scholar
  545. Luenberger, D. G. (1973), Introduction to linear and nonlinear programming, Addison-Wesley, Reading, Mass.Google Scholar
  546. Machura, M., A. Mulawa (1973), Algorithm 450(E4): Rosenbrock function minimization, CACM 16, 482–483Google Scholar
  547. Madsen, K. (1973), A root-finding algorithm based on Newton’s method, BIT 13, 71–75Google Scholar
  548. Mamen, R., D. Q. Mayne (1972), A pseudo Newton-Raphson method for function minimization, JOTA 10, 263–277Google Scholar
  549. Mangasarian, O. L. (1969), Nonlinear programming, McGraw-Hill, New YorkGoogle Scholar
  550. Marfeld, A. F. (1970), Kybernetik des Gehirns: ein Kompendium der Grundlagenforschung, Safari Vlg., BerlinGoogle Scholar
  551. Marquardt, D. W. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM J. 11, 431–441Google Scholar
  552. Masters, C. O., H. Orucker (1971), Observations on direct search procedures, IEEE Trans. SMC-1, 182–184Google Scholar
  553. Matthews, A., D. Davies (1971), A comparison of modified Newton methods for unconstrained optimisation, Comp. J. 14, 293–294Google Scholar
  554. Matyas, J. (1965), Random optimization, ARC 26, 244–251Google Scholar
  555. Matyas, J. (1967), Das zufällige Optimierungsverfahren und seine Konvergenz, Proc. Vth Int. Analogue Comp. Meet., Lausanne, Aug. -Sept. 1967, Band 1, S. 540–544Google Scholar
  556. Maxfield, M., A. Callahan, L. J. Fogel (eds.) (1965), Biophysics and cybernetic systems, Spartan, Washington, D. C.Google Scholar
  557. Maybach, R. L. (1966), Solution of optimal control problems on a high-speed hybrid computer, Simulation 9, 238–245Google Scholar
  558. McArthur, D. S. (1961), Strategy in research: alternative methods for design of experiments, IRE Trans. EM-8, 34–40Google Scholar
  559. McCormick, G. P. (1969), Anti-zig-zagging by bending, Mgmt. Sci. 15, 315–320Google Scholar
  560. McCormick, G. P. (1972), Attempts to calculate global solutions of problems that may have local minima, in: Lootsma (1972a), S. 209–221Google Scholar
  561. McCormick, G. P., J. D. Pearson (1969), Variable metric methods and unconstrained optimization, in: Fletcher (1969a), S. 307–326Google Scholar
  562. McCormick, G. P., K. Ritter (1972), Projection method for unconstrained optimization, JOTA 10, 57–66Google Scholar
  563. McCormick, G. P., K. Ritter (1974), Alternative proofs of the convergence properties of the conjugate-gradient method, JOTA 13, 497–518Google Scholar
  564. McGhee, R. B. (1967), Some parameter-optimization techniques, in: Klerer und Korn (1967), S. 234–255Google Scholar
  565. McGhee, R. B., R. B. Walford (1968), A Monte Carlo approach to the evaluation of conditional expectation parameter estimates for nonlinear dynamic systems, IEEE Trans. AC-13, 29–37Google Scholar
  566. McGrew, D. R., Y. Y. Haimes (1974), Parametric solution to the joint system identification and optimization problems, JOTA 13, 582–605Google Scholar
  567. McLeod, J. (ed.) (1968), Simulation, McGraw-Hill, New YorkGoogle Scholar
  568. McMillan, C., (1970), Mathematical programming: an introduction to the design and application of optimal decision machines, Wiley, New YorkGoogle Scholar
  569. McMurtry, G. J. (1965), A study of stochastic automata as models of adaptive and learning controllers, Ph. D. thesis, Purdue Univ., Lafayette, Ind., Juni 1965Google Scholar
  570. McMurtry, G. J., K. S. Fu (1966), A variable structure automaton used as a multi-modal searching technique, IEEE Trans. AC-11, 379–387Google Scholar
  571. Medvedev, G. A. (1963), Behavior of automatic search systems under the influence of random noise, Engng. Cybern. 1, 3, 53–60Google Scholar
  572. Medvedev, G. A. (1968), Stepping automatic search systems with random step length, ARC 29, 264–269Google Scholar
  573. Medvedev, G. A., A. I. Ruban (1967), Automatic search system using step signals, Engng. Cybern. 5, 2, 146–158Google Scholar
  574. Meerkov, S. M. (1972), Deceleration in the search for the global extremum, ARC 33, 2029–2038Google Scholar
  575. Meissinger, H. F. (1964), Parameter optimization by an automatic open-loop comput-ing method, Proc. IVth Int. Analogue Comp. Meet., Brighton, Sept. 1964, S. 268–274Google Scholar
  576. Meissinger, H. F., G. A. Bekey (1966), An analysis of continuous parameter identification methods, Simulation 6, 94–102Google Scholar
  577. Merzenich, W. (1972), Ein einfaches mathematisches Evolutionsmodell, GMD, Mitt. 21, BonnGoogle Scholar
  578. Meyer, H. A. (ed.) (1956), Symposium on Monte Carlo methods, Wiley, New YorkGoogle Scholar
  579. Michie, O. (1971), Heuristic search, Comp. J. 14, 96–102Google Scholar
  580. Miele, A. (1969), Variational approach to the gradient method: theory and numerical experiments, in: Zadeh, Neustadt and Balakrishnan (1969), S. 143–157Google Scholar
  581. Miele, A., J. W. Cantrell (1969), Study on a memory gradient method for the minimization of functions, JOTA 3, 459–470Google Scholar
  582. Miele, A., J. W. Cantrell (1970), Memory gradient method for the minimization of functions, in: Balakrishnan, Contensou, DeVeubeke et al. ( 1970 ), S. 252–263Google Scholar
  583. Miele, A., J. N. Damoulakis, J. R. Cloutier, J. L. Tietze (1974), Sequential gradient-restoration algorithm for optimal control problems with nondifferential constraints, JOTA 13, 218–255Google Scholar
  584. Miele, A., H. Y. Huang, J. C. Heidemann (1969), Sequential gradient-restoration algorithm for the minimization of constrained functions: ordinary and conjugate gradient versions, JOTA 4, 213–243Google Scholar
  585. Miele, A., A. V. Levy, E. E. Cragg (1971), Modifications and extensions of the conjugate gradient-restoration algorithm for mathematical programming problems, JOTA 7, 450–472Google Scholar
  586. Miele, A., J. L. Tietze, A. V. Levy (1972), Summary and comparison of gradient-restoration algorithms for optimal control problems, JOTA 10, 381–403Google Scholar
  587. Miller, R. E. (1973), A comparison of some theoretical models of parallel computation, IEEE Trans. C-22, 710–717Google Scholar
  588. Millstein, R. E. (1973). Control structures in Illiac IV Fortran, CACM 16, 621–627Google Scholar
  589. Minot, O. N. (1969), Artificial intelligence and new simulations, Simulation 13, 214–215Google Scholar
  590. Minsky, M. (1961), Steps toward artificial intelligence, IRE Proc. 49, 8–30Google Scholar
  591. Miranker, W. L. (1969), Parallel methods for approximating the root of a function, IBM J. Res. Dev. 13, 297–301Google Scholar
  592. Miranker, W. L. (1971), A survey of parallelism in numerical analysis, SIAM Review 13, 524–547Google Scholar
  593. Mitchell, B. A., jr., (1964), A hybrid analog-digital parameter optimizer for Astrac II, AFIPS Conf. Proc. 25, 271–285Google Scholar
  594. Mitchell, R. A., J. L. Kaplan (1968), Nonlinear constrained optimization by a non-random Complex method, NBS J. Res. C, Engng. Instr., 72, 249–258Google Scholar
  595. Mlynski, D. (1964a), Der Wirkungsgrad experimenteller Optimierungsstrategien, Or. -Ing. Diss., Techn. Hochsch. Aachen, Dez. 1964Google Scholar
  596. Mlynskio. (1964b), Maximalisierung durch logische Suchprozesse, in: Steinbuch und Wagner (1964), S. 82–94Google Scholar
  597. Mlynski, D. (1966a), Ein Beitrag zur statistischen Theorie der Optimierungs-strategien I und II, Regelungstechnik 14, 209–215 und 325–330Google Scholar
  598. Mlynski, D. (1966b), Efficiency of experimental strategies for optimizing feed-back control of disturbed processes, Proc. IIIrd IFAC Congr., London, Juni 1966, paper 29-GGoogle Scholar
  599. Moiseev, N. N. (ed.) (1970), Colloquium on methods of optimization, Springer, BerlinGoogle Scholar
  600. Moran, P. A. P. (1967), Unsolved problems in evolutionary theory, in: LeCam und Neyman (1967), Band 4, S. 457–480Google Scholar
  601. Morrison, D. D. (1968), Optimization by least squares, SIAM J. Numer. Anal. 5, 83–88Google Scholar
  602. Motskus, I. B. (1965), Some experiments related to the capabilities of man in solving multiextremal problems heuristically, Engng. Cybern. 33, 40–44Google Scholar
  603. Motskus, I. B. (1967), Mnogoekstremalnye sadachi v projektirovanii, Nauka, MoskauGoogle Scholar
  604. Mockus, J. B. (1971), On the optimization of power distribution systems, in: Schwarz (1971), techn. papers Band 3, S. 6321–6324Google Scholar
  605. Motskus, I. B., A. A. Feldbaum (1963), Symposium on multiextremal problems, Trakay, Juni 1963, Engng. Cybern. 15, 154–155Google Scholar
  606. Movshovich, S. M. (1966), Random search and the gradient method in optimization problems, Engng. Cybern. 46, 39–48Google Scholar
  607. Müller-Merbach, H. (1971), Operations Research: Methoden und Modelle der Optimalplanung, F. Vahlen, Berlin, 2. Auflg.Google Scholar
  608. Mufti, I. H. (1970), Computational methods in optimal control problems, Springer, BerlinGoogle Scholar
  609. Mugele, R. A. (1961), A nonlinear digital optimizing program for process control systems, AFIPS Conf. Proc. 19, 15–32Google Scholar
  610. Mugele, R. A. (1962), A program for optimal control of nonlinear processes, IBM Syst. J. 1, 2–17Google Scholar
  611. Mugele, R. A. (1966), The probe and edge theorems for non-linear optimization, in: Lavi und Vogl (1966), S. 131–144Google Scholar
  612. Munson, J. K., A. I. Rubin (1959), Optimization by random search on the analogue computer, IRE Trans. EC-8, 200–203Google Scholar
  613. Murata, T. (1963), The use of adaptive constrained descent in systems design, Univ. Illinois, Coord. Sci. Lab., report R-189, Urbana, Ill., Dez. 1963Google Scholar
  614. Murray, W. (ed.) (1972a), Numerical methods for unconstrained optimization, Academic Press, LondonGoogle Scholar
  615. Murray, W. (1972b), Second derivative methods, in: Murray (1972a), S. 57–71Google Scholar
  616. Murray, W. (1972c), Failure, the causes and cures, in: Murray(1972a), S. 107–122Google Scholar
  617. Murtagh, B. A. (1970), A short description of the variable-metric method, in: Abadie (1970), S. 525–528Google Scholar
  618. Murtagh, B. A., R. W. H. Sargent (1970), Computational experience with quadratic-ally convergent minimization methods, Comp. J. 13, 185–194Google Scholar
  619. Mutseniyeks, V. A., L. A. Rastrigin (1964), Extremal control of continuous multi-parameter systems by the method of random search, Engng. Cybern. 2, 1, 82–90Google Scholar
  620. Myers, G. E. (1968), Properties of the conjugate-gradient and Davidon methods, JOTA 2, 209–219Google Scholar
  621. Nachtigall, W. (1971), Biotechnik: statische Konstruktionen in der Natur, Quelle und Meyer, HeidelbergGoogle Scholar
  622. Nake, F. (1966), Zertifikat zu Algorithmus 2: Orthonormierung von Vektoren nach E. Schmidt, Computing 1, 281Google Scholar
  623. Neave, H. R. (1973), On using the Box-M011er transformation with multiplicative congruential pseudo-random number generators, Appl. Stat. 22, 92–97Google Scholar
  624. Nelder, J. A., R. Mead (1965), A Simplex method for function minimization, Comp.). 7, 308–313Google Scholar
  625. Nenonen, L. K., B. Pagurek (1969), Conjugate gradient optimization applied to a copper converter model, Automatica 5, 801–810Google Scholar
  626. Newman, D. J. (1965), Location of the maximum on unimodal surfaces, JACM 12, 395–398Google Scholar
  627. Neyman, J. (ed.) (1951), Proc. IInd Berkeley Symp. Math. Stat. Probab., 1950, Univ. California Press, Berkeley, Calif.Google Scholar
  628. Neyman, J. (ed.) (1956), Proc. IIIrd Berkeley Symp. Math. Stat. Probab., 1954/55, Univ. California Press, Berkeley, Calif.Google Scholar
  629. Neyman, J. (ed.) (1961), Proc. IVth Berkeley Symp. Math. Stat. Probab., 1960, Univ. California Press, Berkeley, Calif.Google Scholar
  630. Nickel, K. (1967), Allgemeine Forderungen an einen numerischen Algorithmus, ZAMM 47, Sonderheft, T67 - T68Google Scholar
  631. Nickel, K., K. Ritter (1972), Termination criterion and numerical convergence, SIAM J. Numer. Anal. 9, 277–283Google Scholar
  632. Niemann, H. (1974), Methoden der Mustererkennung, Akadem. Verlagsges., Frankfurt/MainGoogle Scholar
  633. Nikoli, H. J., K. S. Fu (1966), An algorithm for learning without external supervision and its application to learning control systems, IEEE Trans. AC-11, 414–442Google Scholar
  634. Norkin, K. B. (1961), On one method for automatic search for the extremum of a function of many variables, ARC 22, 534–538Google Scholar
  635. Odell, P. L. (1961), An empirical study of three stochastic approximation techniques applicable to sensitivity testing, report NAVWEPS-7837Google Scholar
  636. Oestreicher, H. L., O. R. Moore (eds.) (1968), Cybernetic problems in bionics, Gordon and Breach, New YorkGoogle Scholar
  637. Oi, K., H. Sayama, T. Takamatsu (1973), Computational schemes of the Davidon-Fletcher-Powell method in infinite-dimensional space, JOTA 12, 447–458Google Scholar
  638. Oldenburger, R. (ed.) (1966), Optimal and self optimizing control, MIT Press, Cambridge, Mass.Google Scholar
  639. Oliver, L. T., D. J. Wilde (1964), Symmetric sequential minimax search for a maximum, Fibonacci quart. 2, 169–175Google Scholar
  640. O’Neill, R. (1971), Algorithm AS 47: function minimization using a Simplex procedure, Appl. Stat. 20, 338–345Google Scholar
  641. Opafib, J. (1973), A heuristic method for finding most extrema of a nonlinear functional, IEEE Trans. SMC-3, 102–107Google Scholar
  642. Oren, S. S. (1973), Self-scaling variable metric algorithms without line search for unconstrained minimization, Math. Comp. 27, 873–885Google Scholar
  643. Ortega, J. M., W. C. Rheinboldt (1967), Monotone iterations for nonlinear equations with application to Gauss-Seidel methods, SIAM J. Numer. Ana1.. 4, 171–190Google Scholar
  644. Ortega, J. M., W. C. Rheinboldt (1970), Iterative solution of nonlinear equations in several variables, Academic Press, New YorkGoogle Scholar
  645. Ortega, J. M., W. C. Rheinboldt (1972), A general convergence result for unconstrained minimization methods, SIAM J. Numer. Anal. 9, 40–43Google Scholar
  646. Ortega, J. M., M. L. Rockoff (1966), Nonlinear difference equations and Gauss-Seidel type iterative methods, SIAM J. Numer. Anal. 3, 497–513Google Scholar
  647. Osborne, M. R. (1972), Some aspects of nonlinear least squares calculations, in: Lootsma (1972a), S. 171–189Google Scholar
  648. Osche, G. (1972), Evolution: Grundlagen, Erkenntnisse, Entwicklungen der Abstammungslehre, Herder, FreiburgGoogle Scholar
  649. Ostrowski, A. M. (1966), Solution of equations and systems of equations, Academic Press, New York, 2. Auflg.Google Scholar
  650. Ostrowski, A. M. (1967), Contributions to the theory of the method of steepest descent, Arch. Ration. Mech. Anal. 26, 257–280Google Scholar
  651. Overholt, K. J. (1965), An instability in the Fibonacci and golden section search methods, BIT 5, 284–286Google Scholar
  652. Overholt, K. J. (1967a), Note on algorithm 2: Fibonacci search, and algorithm 7: Minx, and the golden section search, Comp. J. 9, 414Google Scholar
  653. Overholt, K. J. (1967b), Algorithm 16: Gold, Comp. J. 9, 415Google Scholar
  654. Overholt, K. J. (1967c), Algorithm 17: Goldsec, Comp. J. 9, 415Google Scholar
  655. Overholt, K. J. (1973), Efficiency of the Fibonacci search method, BIT 13, 92–96Google Scholar
  656. Pagurek, B., C. M. Woodside (1968), The conjugate gradient method for optimal control problems with bounded control variables, Automatics 4, 337–349Google Scholar
  657. Palmer, J. R. (1969), An improved procedure for orthogonalising the search vectors in Rosenbrock’s and Swann’s direct search optimisation methods, Comp. J. 12, 69–71Google Scholar
  658. Papentin, F. (1972), A Darwinian evolutionary system, Dr. rer. nat. Diss., Univ. TübingenGoogle Scholar
  659. Parkinson, J. M., D. Hutchinson (1972a), A consideration of non-gradient algorithms for the unconstrained optimization of functions of high dimensionality, in: Lootsma (1972a), S. 99–113Google Scholar
  660. Parkinson, J. M., D. Hutchinson (1972b), An investigation into the efficiency of variants on the Simplex method, in: Lootsma (1972a), S. 115–135Google Scholar
  661. Pask, G. (1962), Physical and linguistic evolution in self organizing systems, Proc. Ist IFAC Symp. Optim. Adapt. Contr., Rom, April 1962, S. 199–227Google Scholar
  662. Pask, G. (1971), A cybernetic experimental method and its underlying philosophy, Int. J. Man-Machine Stud. 3, 279–337Google Scholar
  663. Patrick, M. L. (1972), A highly parallel algorithm for approximating all zeros of a polynomial with only real zeros, CACM 15, 952–955Google Scholar
  664. Pattee, H. H., E. A. Edelsack, L. Fein, A. B. Callahan (eds.) (1966), Natural automata and useful simulations, Spartan, Washington, D. C.Google Scholar
  665. Paviani, D. A., D. M. Himmelblau (1969), Constrained nonlinear optimization by heuristic programming, Oper. Res. 17, 872–882Google Scholar
  666. Pearson, J. D. (1969), Variable metric methods of minimization, Comp. J. 12, 171–178Google Scholar
  667. Peckham, G. (1970), A new method for minimising a sum of squares without calculating gradients, Comp. J. 13, 418–420Google Scholar
  668. Pierre, D. A. (1969), Optimization theory with applications, Wiley, New YorkGoogle Scholar
  669. Pierson, B. L., S. G. Rajtora (1970), Computational experience with the Davidon method applied to optimal control problems, IEEE Trans. SSC-6, 240–242Google Scholar
  670. Pike, M. C., I. D. Hill, F. D. James (1967), Note on algorithm 2: Fibonacci search, and on algorithm 7: Minx, and algorithm 2 modified: Fibonacci search, Comp. J. 9, 416–417Google Scholar
  671. Pike, M. C., J. Pixner (1965), Algorithm 2: Fibonacci search, Comp. Bull. 8, 147Google Scholar
  672. Pincus, M. (1970), A Monte Carlo method for the approximate solution of certain types of constrained optimization problems, Oper. Res. 18, 1225–1228Google Scholar
  673. Pinkham, R. S. (1964), Random root location, SIAM J. 12, 855–864Google Scholar
  674. Pinsker, I. Sh., B. M. Tseitlin (1962), A nonlinear optimization problem, ARC 23, 1510–1518Google Scholar
  675. Plane, D. R., C. McMillan, jr. (1971), Discrete optimization: integer programming and network analysis for management decisions, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  676. Plaschko, P., K. Wagner (1973), Evolutions-Linearisierungs-Programm zur Darstellung von numerischen Daten durch beliebige Funktionen, DFVLR Inst. Turbulenzforsch., Berlin, Forschungsbericht DLR-FB-73–55Google Scholar
  677. Pluznikov, L. N., V. O. Andreyev, E. S. Klimenko (1971), Use of random search method in industial planning, Engng. Cybern. 9, 229–235Google Scholar
  678. Polak, E. (1971), Computational methods in optimization: a unified approach, Academic Press, New YorkGoogle Scholar
  679. Polak, E. (1972), A survey of methods of feasible directions for the solution of optimal control problems, IEEE Trans. AC-17, 591–596Google Scholar
  680. Polak, E. (1973), An historical survey of computational methods in optimal control, SIAM Review 15, 553–584Google Scholar
  681. Polak, E., G, RibiEire (1969), Note sur la convergence de méthodes de directions conjugées, Rev. Franç. Inf. Rech. Opér. 3, 16–21Google Scholar
  682. Polyak, B. T. (1969), The conjugate gradient method in extremal problems, USSR Comp. Math. and Math. Phys. 94, 94–112Google Scholar
  683. Ponstein, J. (1967), Seven kinds of convexity, SIAM Review 9, 115–119Google Scholar
  684. Pontrjagin, L. S., V. G. Boltjanskij, R. V. Gamkrelidze, E. F. MisLcenko (1967), Mathematische Theorie optimaler Prozesse, Oldenbourg, München, 2. Auflg.Google Scholar
  685. Powell, D. R., J. R. MacDonald (1972), A rapidly convergent iterative method for the solution of the generalised nonlinear least squares problem, Comp. J. 15, 148–155Google Scholar
  686. Powell, M. J. D. (1962), An iterative method for finding stationary values of a function of several variables, Comp. J. 5, 147–151Google Scholar
  687. Powell, M. J. D. (1964), An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comp. J. 7, 155–162Google Scholar
  688. Powell, M. J. D. (1965)4 A method for minimizing a sum of squares of nonlinear functions without calculating derivatives, Comp. J. 7, 303–307Google Scholar
  689. Powell, M, J. O. (1966), Minimization of functions of several variables, in: Walsh (1966), S. 143–158Google Scholar
  690. Powell, M. J. D. (1968a), On the calculation of orthogonal vectors, Comp. J. 11, 302–304Google Scholar
  691. Powell, M. J. D. (1968b), A Fortran subroutine for solving systems of nonlinearGoogle Scholar
  692. algebraic equations, UKAEA, Res. Group, report AERE-R-5947, Harwell, Berks.Google Scholar
  693. Powell, M. J. D. (1969), A theorem on rank one modifications to a matrix and its inverse, Comp. J. 12, 288–290Google Scholar
  694. Powell, M. J. D. (1970a), Rank one methods for unconstrained optimization, in: Abadie (1970), S. 139–156Google Scholar
  695. Powell, M. J. D. (1970b), A survey of numerical methods for unconstrained optimization, SIAM Review 12, 79–97Google Scholar
  696. Powell, M. J. D. (1970c), A Fortran subroutine for unconstrained minimization, requiring first derivatives of the objective function, UKAEA, Res. Group, report AERE-R-6469, Harwell, Berks.Google Scholar
  697. Powell, M. J. D. (1970d), A Fortran subroutine for solving systems of nonlinear algebraic equations, in: Rabinowitz (1970), S. 115–161Google Scholar
  698. Powell, M. J. D. (1970e), A hybrid method for nonlinear equations, in: Rabinowitz (1970), S. 87–114Google Scholar
  699. Powell, M. J. O. (1970f), Subroutine VA04A (Fortran), updated 20. 5. 1970, in: Hopper (1970), 5. 72Google Scholar
  700. Powell, M. J. O. (1970g), Recent advances in unconstrained optimization, UKAEA. Res. Group, techn. paper AERE-TP-430, Harwell, Berks. Nov. 1970Google Scholar
  701. Powell, M. J. D. (1971), On the convergence of the variable metric algorithm, JIMA 7, 21–36Google Scholar
  702. Powell, M. J. D. (1972a), Some properties of the variable metric algorithm, in: Lootsma (1972a), S. 1–17Google Scholar
  703. Powell, M. J. O. (1972b), Quadratic termination properties of minimization algorithms, I: statement and discussion of results, JIMA 10, 333–342Google Scholar
  704. Powell, M. J. D. (1972c), Quadratic termination properties of minimization algorithms, II: proofs and theorems, JIMA 10, 343–357Google Scholar
  705. Powell, M. J. D. (1972d), A survey of numerical methods for unconstrained optimization, in: Geoffrion (1972), S. 3–21Google Scholar
  706. Powell, M. J. D. (1972e), Problems related to unconstrained optimization, in: Murray (1972a), S. 29–55Google Scholar
  707. Powell, M. J. D. (1972f), Unconstrained minimization algorithms without computation of derivatives, UKAEA, Res. Group, techn. paper AERE-TP-483, Harwell, Berks., April 1972Google Scholar
  708. Poznyak, A. S. (1972), Use of learning automata for the control of random search, ARC 33, 1992–2000Google Scholar
  709. Pugachev, V. N. (1970), Determination of the characteristics of complex systems using statistical trials and analytical investigation, Engng. Cybern. 8, 1109–1117Google Scholar
  710. Pugh, E. L. (1966), A gradient technique of adaptive Monte Carlo, SIAM Review 8, 346–355Google Scholar
  711. Pun, L. (1969), Introduction to optimization practice, Wiley, New YorkGoogle Scholar
  712. Rabinowitz, P. (ed.) (1970), Numerical methods for nonlinear algebraic equations, Gordon and Breach, LondonGoogle Scholar
  713. Ralston, A., H. S. Wilf (Hrsg.)(1967), Mathematische Methoden für Digitalrechner, Oldenbourg, MünchenGoogle Scholar
  714. Ralston, A., H. S. Wilf (Hrsg.) (1969), Mathematische Methoden für Digitalrechner II, Oldenbourg, MünchenGoogle Scholar
  715. Rastrigin, L. A. (1960), Extremal control by the method of random scanning, ARC 21, 891–896Google Scholar
  716. Rastrigin, L. A. (1963), The convergence of the random search method in the extremal control of a many-parameter system, ARC 24, 1337–1342Google Scholar
  717. Rastrigin, L. A. (1965a), Sluchainyi poisk v zadachakh optimisatsii mnogopara-metricheskikh sistem, Zinatne, Riga. Obersetzung dazu (Aug. 1967):Google Scholar
  718. Rastrigin, L. A. (1965b), Random search in optimization problems for multi-parameter systems, Air Force Syst. Comd., Foreign Techn. Div., FTD-HT-67–363Google Scholar
  719. Rastrigin, L. A. (1966), Stochastic methods of complicated multi-parameter system optimization, Proc. IIIrd IFAC Congr., London, Juni 1966, paper 3-FGoogle Scholar
  720. Rastrigin, L. A. (1967), Raboty po teorii i primeneniyu statisticheskikh metodov optimisatsii v institute elektroniki 1 vychislitelnoi tekhniki akademiiGoogle Scholar
  721. nauk Latviiskoi SSR, Avtomatika i, Vychislitelnaya Tekhnika (1967), 5, 31–40Google Scholar
  722. Rastrigin, L. A. (1968), Statisticheskiye metody poiska, Nauka, Moskau Rastrigin, L. A. ( 1969 ), Teorija i primenenije slaainogo poiska, Zinatne.Google Scholar
  723. Riga Rastrigin, L. A. (1972), Adaptivnye sistemy, Band 1, Zinatne, RigaGoogle Scholar
  724. Rauch, S. W. (1973), A convergence theory for a class of nonlinear programming problems, SIAM J. Numer. Anal. 10, 207–228Google Scholar
  725. Rechenberg, I. (1964), Cybernetic solution path of an experimental problem, Roy. Aircr. Establ., libr. transl. 1122, Farnborough, Hants., Aug. 1965, Übersetzung der unveröffentlichten schriftlichen Fassung des Vortrags ‘Kybernetische Lösungsansteuerung einer experimentellen Forschungsaufgabe’, gehalten auf der gemeinsamen Jahrestagung der WGLR und DGRR, Berlin, 1964Google Scholar
  726. Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog, StuttgartGoogle Scholar
  727. Rein, H., M. Schneider (1971), Einführung in die Physiologie des Menschen, Springer, BerlinGoogle Scholar
  728. Rhead, D. G. (1971), Some numerical experiments on Zangwill’s method for un-constrained minimization, Univ. London, Inst. Comp. Sci., work. paper ICSI-319Google Scholar
  729. Ribière, G. (1970), Sur la méthode de Davidon-Fletcher-Powell pour la mini-misation des fonctions, Mgmt. Sci. 16, 572–592Google Scholar
  730. Rice, J. R. (1966), Experiments on Gram-Schmidt orthogonalization, Math. Comp. 20, 325–328Google Scholar
  731. Richardson, J. A., J. L. Kuester (1973), Algorithm 454(E4): the Complex method for constrained optimization, CACM 16, 487–489Google Scholar
  732. Robbins, H., S. Monro (1951), A stochastic approximation method, Ann. Math. Stat. 22, 400–407Google Scholar
  733. Roberts, P. D., R. H. Davis (1969), Conjugate gradients, Control 13, 206–210Google Scholar
  734. Roberts, S. M., H. I. Lyvers (1961), The gradient method in process control, Ind. Engng. Chem. 53, 877–882Google Scholar
  735. Rosen, J. B. (1960), The gradient projection method for nonlinear programming I: linear constraints, SIAM J. 8, 181–217Google Scholar
  736. Rosen, J. B. (1961), The gradient projection method for nonlinear programming II: nonlinear constraints, SIAM J. 9, 514–532Google Scholar
  737. Rosen, J. B. (1966), Iterative solution of nonlinear optimal control problems, SIAM J. Contr. 4, 223–244Google Scholar
  738. Rosen, J. B., O. L. Mangasarian, K. Ritter (eds.) (1970), Nonlinear programming, Academic Press, New YorkGoogle Scholar
  739. Rosen, J. B., S. Suzuki (1965), Construction of nonlinear programming test problems, CACM 8, 113Google Scholar
  740. Rosen, R. (1967), Optimality principles in biology, Butterworths, LondonGoogle Scholar
  741. Rosenblatt, F. (1958), The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65, 386–408Google Scholar
  742. Rosenbrock, H. H. (1960), An automatic method for finding the greatest or least value of a function, Comp. J. 3, 175–184Google Scholar
  743. Rosenbrock, H. H., C. Storey (1966), Computational techniques for chemical engineers, Pergamon Press, OxfordGoogle Scholar
  744. Ross, G. J. S. (1971), The efficient use of function minimization in non-linear maximum-likelihood estimation, Appl. Stat. 19, 205–221Google Scholar
  745. Rothe, R. (1959), Höhere Mathematik für Mathematiker, Physiker and Ingenieure, I: Differentialrechnung and Grundformeln der Integralrechnung nebst Anwendungen, Teubner, Leipzig, 18. Auflg.Google Scholar
  746. Rutishauser, H. (1966), Algorithmus 2: Orthonormierung von Vektoren nach E. Schmidt, Computing 1, 159–161Google Scholar
  747. Rybashov, M. V. (1965a), The gradient method of solving convex programming problems on electronic analog computers, ARC 26, 1886–1898Google Scholar
  748. Rybashov, M. V. (1965b), Gradient method of solving linear and quadratic programming problems on electronic analog computers, ARC 26, 2079–2089Google Scholar
  749. Rybashov, M. V. (1969), Insensitivity of gradient systems in the solution of linear problems on analog computers, ARC 30, 1679–1687Google Scholar
  750. Ryshik, I. M., I. S. Gradstein (1963), Summen-, Produkt-and Integraltafeln, Dt. V1g. Wissensch., Berlin, 2. Auflg.Google Scholar
  751. Saaty, T. L. (1955), The number of vertices of a polyhedron, Amer. Math. Monthly 62, 326–331Google Scholar
  752. Saaty, T. L. (1963), A conjecture concerning the smallest bound on the iterations in linear programning,. Oper. Res. 11, 151–153Google Scholar
  753. Saaty, T. L. (1970), Optimization in integers and related extremal problems, McGraw-Hill, New YorkGoogle Scholar
  754. Saaty, T. L., J. Bram (1964), Nonlinear mathematics, McGraw-Hill, New YorkGoogle Scholar
  755. Sacks, J. (1958), Asymptotic distribution of stochastic approximation procedures, Ann. Math. Stat. 29, 373–405Google Scholar
  756. Sameh, A. H. (1971), On Jacobi and Jacobi-like algorithms for a parallel computer, Math. Comp. 25, 579–590Google Scholar
  757. Samuel, A. L. (1963), Some studies in machine learning using the game of checkers, in: Feigenbaum and Feldman ( 1963 ), S. 71–105Google Scholar
  758. Sargent, R. W. H., O. J. Sebastian (1972), Numerical experience with algorithms for unconstrained minimization, in: Lootsma (1972a), S. 45–68Google Scholar
  759. Sargent, R. W. H., D. J. Sebastian (1973), On the convergence of sequential mini-mization algorithms, JOTA 12, 567–575Google Scholar
  760. Saridis, G. N. (1968), Learning applied to successive approximation algorithms, Proc. 1968 Joint Autom. Contr. Conf., Ann Arbor, Mich., S. 1007–1013Google Scholar
  761. Saridis, G. N. (1970), Learning applied to successive approximation algorithms, IEEE Trans. SSC-6, 97–103Google Scholar
  762. Saridis, G. N., H. D. Gilbert (1970), Self-organizing approach to the stochastic fuel regulator problem, IEEE Trans. SSC-6, 186–191Google Scholar
  763. Satterthwaite, F. E. (1959a), REVOP or random evolutionary operation, Merrimack College, report 10–10–59, North Andover, Mass.Google Scholar
  764. Satterthwaite, F. E. (1959b), Random balance experimentation, Technometrics 1, 111–137Google Scholar
  765. Satterthwaite, F. E., D. Shainin (1959), Pinpoint important process variable with polyvariable experimentation, J. Soc. Plast. Engrs. 15, 225–230Google Scholar
  766. Savage, J. M. (1966), Evolution, Bayer. Landwirtsch. Vlg., MünchenGoogle Scholar
  767. Sawaragi, Y., T. Takamatsu, K. Fukunaga, E. Nakanishi, H. Tamura (1971), Dynamic version of steady state optimizing control of a distillation column by trial method, Automatica 7, 509–516Google Scholar
  768. Schechter, S. (1962), Iteration methods for nonlinear problems, Trans. Amer. Math. Soc. 104, 179–189Google Scholar
  769. Schechter, S. (1968), Relaxation methods for convex problems, SIAM J. Numer. Anal. 5, 601–612Google Scholar
  770. Schechter, S. (1970), Minimization of a convex function by relaxation, in: Abadie (1970), S. 177–190Google Scholar
  771. Scheeffer, L. (1886), Ober die Bedeutung der Begriffe ‘Maximum and Minimum’ in der Variationsrechnung, Mathem. Annalen 26, 197–208Google Scholar
  772. Scheuer, E. M., D. S. Stoller (1962), On the generation of normal random deviates, Technometrics 4, 278–281Google Scholar
  773. Schinzinger, R. (1966), Optimization in electromagnetic system design, in: Lavi and Vogl (1966), S. 163–214Google Scholar
  774. Schley, C. H., jr., (1968), Conjugate gradient methods for optimization, Gen.Google Scholar
  775. Electr., Res. Dev. Cntr., report 68-C-008, Schenectady, N. Y., Jan. 1968Google Scholar
  776. Schmalhausen, I. I. (1964), Grundlagen des Evolutionsprozesses vom kyberneti-schen Standpunkt, in: Ljapunov, Kämmerer and Thiele (1964a), S. 151–188Google Scholar
  777. Schmetterer, L. (1961), Stochastic approximation, in: Neyman (1961), Band 1, S. 587–609Google Scholar
  778. Schmidt, J. W., H. Schwetlick (1968), Ableitungsfreie Verfahren mit höherer Konvergenzgeschwindigkeit, Computing 3, 215–226Google Scholar
  779. Schmidt, J. W., H. F. Trinkaus (1966), Extremwertermittlung mit Funktionswerten bei Funktionen von mehreren Veränderlichen, Computing 1, 224–232Google Scholar
  780. Schmidt, J. W., K. Vetters (1970), Ableitungsfreie Verfahren für nichtlineare Optimierungsprobleme, Numer. Math. 15, 263–282Google Scholar
  781. Schmitt, E. (1969), Adaptive computer algorithms for optimization and root finding, NTZ-Report 6, VDE Vlg., BerlinGoogle Scholar
  782. Schrack, G., N. Borowski (1972), An experimental comparison of three random searches, in: Lootsma (1972a), S. 137–147Google Scholar
  783. Schumer, M. A. (1967), Optimization by adaptive random search, Ph. D. thesis, Princeton Univ., Princeton, N. J., Nov. 1967Google Scholar
  784. Schumer, M. A. (1969), Hill climbing on a sample function of a Gaussian Markov process, JOTA 4, 413–418Google Scholar
  785. Schumer, M. A., K. Steiglitz (1968), Adaptive step size random search, IEEE Trans. AC-13, 270–276Google Scholar
  786. Schuster, P. (1972), Vom Makromolekül zur primitiven Zelle: die Entstehung biologischer Funktion, Chemie in unserer Zeit 6, 1, 1–16Google Scholar
  787. Schwarz, H. (ed.) (1971), Multivariable technical control systems, North-Holland, AmsterdamGoogle Scholar
  788. Schwarz, H. R., H. Rutishauser, E. Stiefel (1968), Numerik symmetrischer Matrizen, Teubner, StuttgartGoogle Scholar
  789. Schwetlick, H. (1970), Algorithmus 12: Ein ableitungsfreies Verfahren zur Lösung endlich-dimensionaler Gleichungssysteme, Computing 5, 82–88Google Scholar
  790. Sergiyevskiy, G. M., A. P. Ter-Saakov (1970), Factor experiments in many-dimension-al stochastic approximation of an extremum, Engng. Cybern. 8, 949–954Google Scholar
  791. Shah, B. V., R. J. Buehler, O. Kempthorne (1964), Some algorithms for minimizing a function of several variables, SIAM J. 12, 74–92Google Scholar
  792. Shanno, D. F. (1970a), Parameter selection for modified Newton methods for function minimization, SIAM J. Numer. Anal. 7, 366–372Google Scholar
  793. Shanno, D. F. (1970b), Conditioning of quasi-Newton methods for function minimization, Math. Comp. 24, 647–656Google Scholar
  794. Shanno, D. F., P. C. Kettler (1970), Optimal conditioning of quasi-Newton methods, Math. Comp. 24, 657–664Google Scholar
  795. Shapiro, I. J., K. S. Narendra (1969), Use of stochastic automata for parameter self-optimization with multimodal performance criteria, IEEE Trans. SSC-5, 352–360Google Scholar
  796. Shedler, G. S. (1967), Parallel numerical methods for the solution of equations, CACM 10, 286–291Google Scholar
  797. Shimizu, T. (19691, A stochastic approximation method for optimization problems, JACM 16, 511–516Google Scholar
  798. Shubert, B. O. (1972), A sequential method seeking the global maximum of a function, SIAM J. Numer. Anal. 9, 379–388Google Scholar
  799. Silverman, G. (1969), Remark on algorithm 315(E4): the damped Taylor’s series method for minimizing a sum of squares and for solving systems of nonlinear equations, CACM 12, 513Google Scholar
  800. Singer, E. (1962), Simulation and optimization of oil refinery design, in: Dickert, Enyedy, Huckaba et al. ( 1962 ), S. 62–74Google Scholar
  801. Sirisena, H. R. (1973), Computation of optimal controls using a piecewise polynomial parameterization, IEEE Trans. AC-18, 409–411Google Scholar
  802. Slagle, J. R. (1972), Einführung in die heuristische Programmierung: künstliche Intelligenz and intelligente Maschinen, V1g. Moderne Industrie. MünchenGoogle Scholar
  803. Smith, C. S. (1962), The automatic computation of maximum likelihood estimates, Nat. Coal Board, Sci. Oept., report SC-846-MR-40, Juni 1962Google Scholar
  804. Smith, D. E. (14973), An empirical investigation of optimum-seeking in the computer simulation situation, Oper. Res. 21, 475–497Google Scholar
  805. Smith, F. B., jr., D. F. Shanno (1971), An improved Marquardt procedure for nonlinear regressions, Technometrics 13, 63–74Google Scholar
  806. Smith, L. B. (1969), Remark on algorithm 178(E4): direct search, CACM 12, 638Google Scholar
  807. Smith, N. H., O. F. Rudd (1964), The feasibility of directed random search, Univ. Wisconsin, Dept. Chem. Engng., reportGoogle Scholar
  808. Snell, F. M. (ed.) (1967), Progress in theoretical biology, vol. 1, Academic Press, New YorkGoogle Scholar
  809. Sorenson, H. W. (1969), Comparison of some conjugate direction procedures for function optimization, J. Franklin Inst. 288, 421–441Google Scholar
  810. Southwell, R. V. (1940), Relaxation methods in engineering science: a treatise on approximate computation, Oxford Univ. Press, OxfordGoogle Scholar
  811. Southwell, R. V. (1946), Relaxation methods in theoretical physics, Clarendon Press, OxfordGoogle Scholar
  812. Späth, H. (1967), Algorithm 315(E4, C5): the damped Taylor’s series method for minimizing a sum of squares and for solving systems of nonlinear equations, CACM 10, 726–728Google Scholar
  813. Spang, H. A., III (19621, A review of minimization techniques for nonlinear functions, SIAM Review 4, 343–365Google Scholar
  814. Spedicato, E. (1973), Stability of Huang’s update for the conjugate gradient method, JOTA 11, 469–479Google Scholar
  815. Spendley, W. (1969), Nonlinear least squares fitting using a modified Simplex minimization method, in: Fletcher (1969a), S. 259–270Google Scholar
  816. Spendley, W., Spendley, W., G. R. Hext, F. R. Himsworth (1962), Sequential application of Simplex designs in optimization and evolutionary operation, Technometrics 4, 441–461Google Scholar
  817. Speyer, J. L., H. J. Kelley, N. Levine, W. F. Denham (1971), Accelerated gradient projection technique with application to rocket trajectory optimization, Automatica 7, 37–43Google Scholar
  818. Stanton, E. L. (1969), A discrete element analysis of elastoplastic plates by energy minimization, Ph. D. thesis, Case Western Reserve Univ., Jan. 1969Google Scholar
  819. Stark, R. M., R. L. Nicholls (1972), Mathematical foundations for design: civil engineering systems, McGraw-Hill, New YorkGoogle Scholar
  820. Stebbins, G. L. (1968), Evolutionsprozesse, G. Fischer, StuttgartGoogle Scholar
  821. Stein, M. L. (1952), Gradient methods in the solution of systems of linear equations, NBS J. Res. 48, 407–413Google Scholar
  822. Steinbuch, K. (1971), Automat und Mensch, Springer, Berlin, 4. Auflg.Google Scholar
  823. Steinbuch, K., S. W. Wagner (Hrsg.) (1964), Neuere Ergebnisse der Kybernetik, Oldenbourg, MünchenGoogle Scholar
  824. Stewart, E. C., W. P. Kavanaugh, D. H. Brocker (1967), Study of a global search algorithm for optimal control, Proc. Vth Int. Analogue Comp. Meet., Lausanne, Aug. -Sept. 1967, S. 207–230Google Scholar
  825. Stewart, G. W. (1967), A modification of Oavidon’s minimization method to accept difference approximations of derivatives, JACM 14, 72–83Google Scholar
  826. Stewart, G. W. (1973), Conjugate direction methods for solving systems of linear equations, Numer. Math. 21, 285–297Google Scholar
  827. Stiefel, E. (1952), Ober einige Methoden der Relaxationsrechnung, ZAMP 3, 1–33Google Scholar
  828. Stiefel, E. (1965), Einführung in die numerische Mathematik, Teubner, Stuttgart, 4. Auflg.Google Scholar
  829. Stoer, J., C. Witzgall (1970), Convexity and optimization in finite dimensions I, Springer, BerlinGoogle Scholar
  830. Stolz, O. (1893), Grundzüge der Differential-und Integralrechnung, erster Theil: reelle Veränderliche und Functionen, Abschnitt V: die größten und kleinsten Werthe der Functionen, S. 199–258, Teubner, LeipzigGoogle Scholar
  831. Stone, H. S. (1973a), Parallel computation: an introduction, IEEE Trans. C-22, 709–710Google Scholar
  832. Stone, H. S. (1973b), An efficient parallel algorithm for the solution of a tri-diagonal linear system of equations, JACM 20, 27–38Google Scholar
  833. Storey, C. (1962), Applications of a hill climbing method of optimization, Chem. Engng. Sci. 17, 1, 45–52Google Scholar
  834. Storey, C., H. H. Rosenbrock (1964), On the computation of the optimal temperature profile in a tubular reaction vessel, in: Balakrishnan und Neustadt (1964), S. 23–64Google Scholar
  835. Stratonovich, R. L. (1968), Does there exist a theory of synthesis of optimal Tap. adaptive, self-learning and self-adaptive systems? ARC 29, 83–92Google Scholar
  836. Stratonovich, R. L. (1970), Optimal algorithms of the stochastic approximation Tarp type, Engng. Cybern. 8, 20–27Google Scholar
  837. Strongin, R. G. (1970), Multi-extremal minimization, ARC 31, 1085–1088Google Scholar
  838. Strongin, R. G. (1971), Minimization of many-extremal functions of several variables, Engng. Cybern. 9, 1004–1010Google Scholar
  839. Suchowitzki, S. I., L. I. Awdejewa (1969), Lineare und konvexe Programmierung, Oldenbourg, MünchenGoogle Scholar
  840. Sugie, N. (1964), An extension of Fibonaccian searching to multidimensional cases, IEEE Trans. AC-9, 105Google Scholar
  841. Sutti, C., L. Trabattoni, P. Brughiera (1972), A method for minimization of a one-dimensional nonunimodal function, in: Szegö ( 1972 ), S. 181–192Google Scholar
  842. Svechinskii, V. B. (1971), Random search in probabilistic iterative algorithms, ARC 32, 76–80Google Scholar
  843. Swann, W. H. (1964), Report on the development of a new direct searching method of optimization, ICI, Centr. Instr. Lab., research note 64–3, Middlesborough, Yorks., Juni 1964Google Scholar
  844. Swann, W. H. (1969), A survey of non-linear optimization techniques, FEBSLetters 2, März, Suppl., S39 - S55Google Scholar
  845. Swann, W. H. (1972), Direct search methods, in: Murray (1972a), S. 13–28 Sweschnikow, A. A. (Red.) ( 1970 ), Wahrscheinlichkeitsrechnung und mathematische Statistik in Aufgaben, Teubner, LeipzigGoogle Scholar
  846. Sydow, A. (1968), Eine Methode zur exakten Realisierung des Gradientenverfahrens auf dem iterativ-arbeitenden Analogrechner, messen-steuern-regeln 11, 462–465Google Scholar
  847. Synge, J. L. (1944), A geometrical interpretation of the relaxation method, Quart. Appl. Math. 2, 87–89Google Scholar
  848. Szegö, G. P. (ed.) (1972), Minimization algorithms, mathematical theories, and computer results, Academic Press, New YorkGoogle Scholar
  849. Szegö, G. P., G. Treccani (1972), Axiomatization of minimization algorithms and a new conjugate gradient method, in: Szegö ( 1972 ), S. 193–216Google Scholar
  850. Tabak, D. (1969), Comparative study of various minimization techniques used in mathematical programming, IEEE Trans. AC-14, 572Google Scholar
  851. Tabak, D. (1970), Applications of mathematical programming techniques in optimal control: a survey, IEEE Trans. AC-15, 688–690Google Scholar
  852. Talkin, A. I. (1964), The negative gradient method extended to the computer programming of simultaneous systems of differential and finite equations, AFIPS Conf. Proc. 26, 539–543Google Scholar
  853. Tapley, B. D., J. M. Lewallen (1967), Comparison of several numerical optimization methods, JOTA 1, 1–32Google Scholar
  854. Taran, V. A. (1968a), A discrete adaptive system with random search for the optimum, Engng. Cybern. 6, 4, 142–150Google Scholar
  855. Taran, V. A. (1968b), Adaptive systems with random extremum search, ARC 29, 1447–1455Google Scholar
  856. Tazaki, E., A. Shindo, T. Umeda (1970), Decentralized optimization of a chemical process by a feasible method, IFAC Kyoto Symp. Syst. Engng. Appr. Comp. Contr., Aug. 1970, paper 25. 1Google Scholar
  857. Thom, R. (1969), Topological models in biology, Topology 8, 313–336Google Scholar
  858. Thomas, M. E., D. J. Wilde (1964), Feed-forward control of overdetermined systems by stochastic relaxation, in: Blakemore and Davis (1964), S. 16–22Google Scholar
  859. Titterington, D. M. (1973), A method of extremum adaptation, JIMA 11, 297–315Google Scholar
  860. Todd, J. (1949), The condition of certain matrices I, Quart. J. Mech. Appl. Math. 2, 469–472Google Scholar
  861. Tokumaru, H., N. Adachi, K. Goto (1970), Davidon’s method for minimization problems in Hilbert space with an application to control problems, SIAM J. Contr. 8, 163–178Google Scholar
  862. Tolle, H. (1971), Optimierungsverfahren fOr Variationsaufgaben mit gewöhnlichen Differentialgleichungen als Nebenbedingungen, Springer, BerlinGoogle Scholar
  863. Tomlin, F. K., L. B. Smith (1969), Remark on algorithm 178(E4): direct search, CACM 12, 637–638Google Scholar
  864. Tovstucha, T. I. (1960), The effect of random noise on the steady-state operation of a step-type extremal system for an object with a parabolic characteristic, ARC 21, 398–404Google Scholar
  865. Traub, J. F. (1964), Iterative methods for the solution of equations, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  866. Treccani, G., L. Trabattoni, G. P. Szegö (1972), A numerical method for the isolation of minima, in: Szegö ( 1972 ), S. 239–289Google Scholar
  867. Zypkin, Ja. S. (1966), Adaption and Lernen in automatischen Systemen, Oldenbourg, MünchenGoogle Scholar
  868. Zypkin, Ja. S. (1967), Probleme der Adaption in automatischen Systemen, messensteuern-regeln 10, 362–365Google Scholar
  869. Tsypkin, Ya. Z. (1968a), All the same, does a theory of synthesis of optimal adaptive systems exist? ARC 29, 93–98Google Scholar
  870. Tsypkin, Ya. Z. (1968b), Optimal hybrid adaptation and learning algorithms, ARC 29, 1271–1276Google Scholar
  871. Tsypkin, Ya. Z. (1968c), Self-learning, what is it ? IEEE Trans. AC-13, 608–612Google Scholar
  872. Zypkin, Ja. S. (1970a), Adaption und Lernen in kybernetischen Systemen, Oldenbourg, MünchenGoogle Scholar
  873. Tsypkin, Ya. Z. (1970b), On learning systems, IFAC Kyoto Symp. Syst. Engng. Appr. Comp. Contr., Aug. 1970, paper 34. 1Google Scholar
  874. Tsypkin, Ya. Z. (1970c), Generalized learning algorithms, ARC 31, 86–92Google Scholar
  875. Tsypkin, Ya. Z. (1971), Smoothed randomized functionals and algorithms in adaptation and learning theory, ARC 32, 1190, 1209Google Scholar
  876. Tsypkin, Ya. Z.. A. I. Kaplinskiy, K. A. Larionov (1970), Adaptation and learning algorithms under nonstationary conditions, Engng. Cybern. 8, 829–840Google Scholar
  877. Tsypkin, Ya. Z., A. S. Poznyak (1972), Finite learning automata, Engng. Cybern. 10, 478–490Google Scholar
  878. Ueing, U. (1971), Zwei Lösungsmethoden für nichtkonvexe Programmierungsprobleme, Springer, BerlinGoogle Scholar
  879. Ueing, U. (1972), A combinatorial method to compute a global solution of certain non-convex optimization problems, in: Lootsma (1972a), S. 223–230Google Scholar
  880. Unbehauen, H. (1971), On the parameter optimization of multivariable control systems, in: Schwarz (1971), techn. papers vol. 2, S. 22101–21011Google Scholar
  881. Vagin, V. N., L. Ye. Rudelson (1968), An example of a self-organizing system, Engng. Cybern. 6, 6, 33–40Google Scholar
  882. Vajda, S. (1961), Mathematical programming, Addison-Wesley, Reading, Mass.Google Scholar
  883. Vajda, S. (1967), The mathematics of experimental design, Griffin, LondonGoogle Scholar
  884. VanNorton, R. (1967), Lösung linearer Gleichungssysteme nach dem Verfahren von Gauß-Seidel, in: Ralston und Wilf (1967), S. 92–105Google Scholar
  885. Varah, J. M. (1965), Certification of algorithm 203(E4): steep 1, CACM 8, 171Google Scholar
  886. Varga, J. (1974), Praktische Optimierung: Verfahren und Anwendungen der linearen und nichtlinearen Optimierung, Oldenbourg, MünchenGoogle Scholar
  887. Varga, R. S. (1962), Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  888. Vaysbord, E. M. (1967), Asymptotic estimates of the rate of convergence of random search, Engng. Cybern. 5, 4, 22–32Google Scholar
  889. Vaysbord, E. M. (1968), Convergence of a method of random search, Engng. Cybern. 6, 3, 44–48Google Scholar
  890. Vaysbord, E. M. (1969), Convergence of a certain method of random search for a global extremum of a random function, Engng. Cybern. 7, 1, 46–50Google Scholar
  891. Vaysbord, E. M., O. B. Yudin (1968), Multiextremal stochastic approximation. Engng. Cybern. 6, 5, 1–11Google Scholar
  892. Venter, J. H. (1967), An extension of the Robbins-Monro procedure, Ann. Math. Stat. 38, 181–190Google Scholar
  893. Viswanathan, R., K. S. Narendra (1972), A note on the linear reinforcement scheme for variable-structure stochastic automata, IEEE Trans. SMC-2, 292–294Google Scholar
  894. Vitale, P., G. Taylor (1968), A note on the application of Davidon’s method to nonlinear regression problems, Technometrics 10, 843–849Google Scholar
  895. Vogelsang, R. (1963), Die mathematische Theorie der Spiele, Dümnler, Bonn Voltaire, F. M. Arouet de ( 1759 ), Candide oder der Optimismus, Insel, Frankfurt/ Main, 1973Google Scholar
  896. Volz, R. A. (1965), The minimization of a function by weighted gradients, IEEE Proc. 53, 646–647Google Scholar
  897. Volz, R. A. (1973), Example of function optimization via hybrid computation, Simulation 21, 43–48Google Scholar
  898. Neumann, J. (1960), Die Rechenmaschine und das Gehirn, Oldenbourg, MünchenGoogle Scholar
  899. Neumann, J., O. Morgenstern (1961), Spieltheorie und wirtschaftliches Verhalten, Physics, WürzburgGoogle Scholar
  900. Waddington, C. H. (ed.) (1968), Towards a theoretical biology I: prolegomena, Edinburgh Univ. Press, EdinburghGoogle Scholar
  901. Wald, A. (1966), Sequential analysis, Wiley, New York, 8. Auflg.Google Scholar
  902. Wallack, P. (1964), Certification of algorithm 203(E4): steep 1, CACM 7, 585Google Scholar
  903. Walsh, J. (ed.) (1966), Numerical analysis: an introduction, Academic Press, LondonGoogle Scholar
  904. Ward, L., A. Nag, L. C. W. Dixon (1969), HiIl-climbing techniques as a method of calculating the optical constants and thickness of a thin metallic film, Brit. J. Appl. Phys. (J. Phys. D), Ser. 2, 2, 301–304Google Scholar
  905. Wasan, M. T. (1969), Stochastic approximation, Cambridge Univ. Press, CambridgeGoogle Scholar
  906. Wasscher, E. J. (1963a), Algorithm 203(E4): steep 1, CACM 6, 517–519Google Scholar
  907. Wasscher, E. J. (1963b), Algorithm 204(E4): steep 2, CACM, 6, 519Google Scholar
  908. Wasscher, E. J. (1963c), Remark on algorithm 129(E4): minifun, CACM 6, 521Google Scholar
  909. Wasscher, E. J. (1965), Remark on algorithm 205(E4): ative, CACM 8, 171Google Scholar
  910. Weber, H. H. (1972), Einführung in Operations Research, Akad. Verlagsges., Frankfurt/mainGoogle Scholar
  911. Wegge, L. (1966), On a discrete version of the Newton-Raphson method, SIAM J. Numer. Anal. 3, 134–142Google Scholar
  912. Weinberg, F. (Hrsg.) (1968), Einführung in die Methode Branch and Bound, Springer, BerlinGoogle Scholar
  913. Weinberg, F., C. A. Zehnder (Hrsg.) (1969), Heuristische Planungsmethoden, Springer, BerlinGoogle Scholar
  914. Weisman, J., C. F. Wood (1966), The use of optimal search for engineering design, in: Levi and Vogl ( 1966 ), S. 219–228Google Scholar
  915. Weisman, J., C. F. Wood, L. Rivlin (1965), Optimal design of chemical process systems, AIChE Chem. Engng. Progr. Symp. Ser. 61, no. 55, S. 50–63Google Scholar
  916. Weiss, E. A., D. H. Archer, D. A. Burt (19611. Computer sets tower for best run, Petrol Refiner 40, 10, 169–174Google Scholar
  917. Wells, M. (1965), Algorithm 251(E4): function minimization ( Flepomin ), CACM 8, 169–170Google Scholar
  918. Werner, J. (1974), Ober die Konvergenz des Davidon-Fletcher-Powell-Verfahrens für streng konvexe Minimierungsaufgaben im Hilbertraum, Computing 12, 167–176Google Scholar
  919. Wheeling, R. F. (1960), Optimizers: their structure, CACM 3, 632–638Google Scholar
  920. White, L. J., R. G. Day (1971), An evaluation of adaptive step-size random search, IEEE Trans. AC-16, 475–478Google Scholar
  921. White, R. C., (1970), Hybrid-computer optimization of systems with random parameters, Ph. D. thesis, Univ. Arizona, Tucson, Ariz., Juni 1970Google Scholar
  922. White, R. C., (1971), A survey of random methods for parameter optimization, Simulation 17, 197–205Google Scholar
  923. Whitley, V. W. (1962), Algorithm 129(E4): minifun, CACM 5, 550–551Google Scholar
  924. Whittle, P. (1971), Optimization under constraints: theory and applications of nonlinear programming, Wiley-Interscience, LondonGoogle Scholar
  925. Wiener, N. (1963), Kybernetik: Regelung and Nachrichtenübertragung in Lebewesen and Maschine, Econ, DüsseldorfGoogle Scholar
  926. Wiener, N., J. P. Schadé (eds.) (1965), Progress in biocybernetics, vol. 2, Elsevier, AmsterdamGoogle Scholar
  927. Wilde, D. J. (1963), Optimization by the method of contour tangents, AIChE J. 9, 2, 186–190Google Scholar
  928. Wilde, D. J. (1964), Optimum seeking methods, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  929. Wilde, D. J. (1965), A multivariable dichotomous optimum-seeking method, IEEE Trans. AC-10, 85–87Google Scholar
  930. Wilde, D. J. (1966), Objective function indistinguishability in unimodal optimization, in: Lavi and Vogl (1966), S. 341–350Google Scholar
  931. Wilde, D. J., C. S. Beightler (1967), Foundations of optimization, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  932. Wilkinson, J. H. (1965), The algebraic eigenvalue problem, Oxford Univ. Press, LondonGoogle Scholar
  933. Wilkinson, J. H., C. Reinsch (1971), Handbook for automatic computation, vol 2: linear algebra, Springer, BerlinGoogle Scholar
  934. Wilson, E. O., W. H. Bossert (1973), Einführung in die Populationsbiologie, Springer, BerlinGoogle Scholar
  935. Witte, B. F. W., W. R. Holst (1964), Two new direct minimum search procedures for functions of several variables, AFIPS Conf. Proc. 25, 195–209Google Scholar
  936. Witten, I. H. (1972), Comments on ‘use of stochastic automata for parameter self-optimization with multimodal performance criteria’, IEEE Trans. SMC-2, 269–292Google Scholar
  937. Wolf, F., A. Schmitt (1966), Modelle lernender Automaten, Vieweg, BraunschweigGoogle Scholar
  938. Wolfe, P. (1959a), The simplex method for quadratic programming, Econometrica 27, 382–398Google Scholar
  939. Wolfe, P. (1959b), The secant method for simultaneous nonlinear equations, CACM 2, 12–13Google Scholar
  940. Wolfe, P. (1966), On the convergence of gradient methods under constraints, IBM Zürich, Res. Lab., report RZ-204, März 1966Google Scholar
  941. Wolfe, P. (1967), Another variable metric method, IBM working paperGoogle Scholar
  942. Wolfe, P. (1969), Convergence conditions for ascent methods, SIAM Review 11, 226–235Google Scholar
  943. Wolfe, P. (1970), Convergence theory in nonlinear programming, in: Abadie (1970), S. 1–36Google Scholar
  944. Wolfe, P. (1971), Convergence conditions for ascent methods II: some corrections, SIAM Review 13, 185–188Google Scholar
  945. Wood, C. F. (1960), Application of direct search to the solution of engineering problems, Westinghouse, Res. Lab., sci. paper 6–41210–1–P1, Pittsburgh, Pa., Okt. 1960Google Scholar
  946. Wood, C. F. (1962), Recent developments in direct search techniques, Westinghouse, Res. Lab., res. paper 62–159–522–R1, Pittsburgh, Pa.Google Scholar
  947. Wood, C. F. (1965), Review of design optimization techniques, IEEE Trans. SSC-1, 14–20Google Scholar
  948. Yates, F. (1967), A fresh look at the basic principles of the design and analysis of experiments, in: LeCam and Neyman (1967), Band 4, S. 777–790Google Scholar
  949. Youden, W. J., O. Kempthorne, J. W. Tukey, G. E. P. Box, J. S. Hunter, F. E. Satterthwaite, T. A. Budne (1959), Discussion of the papers of Messrs. Satterthwaite and Budne, Technometrics 1, 157–193Google Scholar
  950. Yovits, M. C., S. Cameron (eds.) (1960), Self-organizing systems, Pergamon Press, OxfordGoogle Scholar
  951. Yovits, M. C., G. T. Jacabi, D. G. Goldstein (eds.) (1962), Self-organizing systems, Spartan, Washington, D. C.Google Scholar
  952. Yudin, D. B. (1965), Quantitative analysis of complex systems I, Engng. Cybern. 31, 1–9Google Scholar
  953. Yudin, D. B. (1966), Quantitative analysis of complex systems II, Engng. Cybern. 41, 1–13Google Scholar
  954. Yudin, D. B. (1972), New approaches to formalizing the choice of decisions in complex situations, ARC 33, 747–756Google Scholar
  955. Yvon, J. P., (1972), On some random search methods, in: Szeg6 (1972), S. 313–335Google Scholar
  956. Zach, F. (1974), Technisches Optimieren, Springer, WienGoogle Scholar
  957. Zadeh, L. A., L. W. Neustadt, A. V. Balakrishnan (eds.) (1969a), Computing methods in optimization problems 2, Academic Press, LondonGoogle Scholar
  958. Zadeh, L. A., L. W. Neustadt, A. V. Balakrishnan (eds.) (1969b), Computing methods in optimization problems, Springer, BerlinGoogle Scholar
  959. Zadeh, N. (1970), A note on the cyclic coordinate ascent method, Mgmt. Sci. 16, 642–644Google Scholar
  960. Zahradnik, R. L. (1971), Theory and techniques of optimization for practicing engineers, Barnes and Noble, New YorkGoogle Scholar
  961. Zakharov, V. V. (1969), A random search method, Engng. Cybern. 72, 26–30Google Scholar
  962. Zakharov, V. V. (1970), The method of integral smoothing in many-extremal and stochastic problems, Engng. Cybern. 8, 637–642Google Scholar
  963. Zangwill, W. I. (1967), Minimizing a function without calculating derivatives, Comp. J. 10, 293–296Google Scholar
  964. Zangwill, W. I. (1969), Nonlinear programming: a unified approach, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  965. Zeleznik, F. J. (1968), Quasi-Newton methods for nonlinear equations, JACM 15, 265–271Google Scholar
  966. Zellnik, H. E., N. E. Sondak, R. S. Davis (1962), Gradient search optimization, Chem. Engng. Progr. 588, 35–41Google Scholar
  967. Zettl, G. (1970), Ein Verfahren zum Minimieren einer Funktion bei eingeschränktem Variationsbereich der Parameter, Numer. Math. 15, 415–432Google Scholar
  968. Zigangirov, K. S. (1965), Optimal search in the presence of noise, Engng. Cybern. 3, 4, 112–116Google Scholar
  969. Zoutendijk, G. (1960), Methods of feasible directions: a study in linear and nonlinear programming, Elsevier, AmsterdamGoogle Scholar
  970. Zoutendijk, G. (1970), Nonlinear programming: computational methods, in: Abadie (1970), S. 37–86Google Scholar
  971. Zurmühl, R. (1965), Praktische Mathematik für Ingenieure and Physiker, Springer, Berlin, 5. Auflg.Google Scholar
  972. Zwart, P. B. (1970), Nonlinear programming: a quadratic analysis of ridge paralysis, JOTA 6, 331–339Google Scholar
  973. Zwart, P. B. (1973), Nonlinear programming: counterexample to two global optimization algorithms, Oper. Res. 21, 1260–1266Google Scholar
  974. Zypkin, Ja. S. siehe unter Tsypkin, Ya. Z.Google Scholar

Copyright information

© Springer Basel AG 1977

Authors and Affiliations

  • Hans-Paul Schwefel

There are no affiliations available

Personalised recommendations