Advertisement

Zusammenfassung

A group ๐”Š is called cyclic if it contains an element a, called generator of ๐”Š, such that each element of ๐”Š is a power of a. If ๐”Š is a cyclic group and a its generator, then ๐”Š is denoted by the symbol (a). From the first formula (1) in 19.3 it follows that every cyclic group is Abelian.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

ยฉย Springer Basel AGย 1976

Authors and Affiliations

  • O.ย Borลฏvka
    • 1
  1. 1.Grundlagen der Gruppoid- und GruppentheorieVEB Deutscher Verlag der WissenschaftenBerlinDeutschland

Personalised recommendations